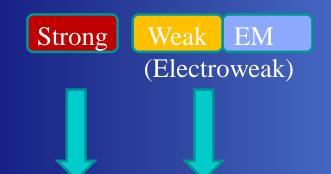


•

1



Thank you for giving me the opportunity to visit Quy Nhon again !

Outline

- Introduction
- Super-Kamiokande
- $p \rightarrow e^+ \pi^0, \mu^+ \pi^0$
- $p \rightarrow \nu K^+$
- Other modes
- Summary and prospects (SK-Gd, Hyper-K)

1. Introduction

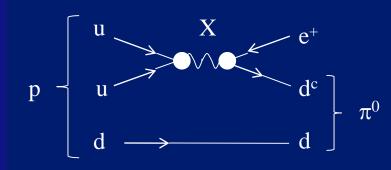
The Standard Model has been successful! ... but why so many parameters?

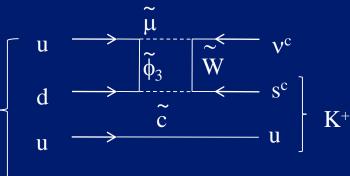
Grand Unified Theories

GUTs: attempt to unify Strong and Electroweak interactions.

GUTs scale: 10¹⁴⁻¹⁶ GeV

Lepton and baryon




Cannot be reached by Accelerators.

numbers are not conserved. Proton decay is permitted !

Nucleon decay experiment is the direct probe for GUTs.

Examples of proton decay

Minimal SU(5) model

SUSY SU(5) model

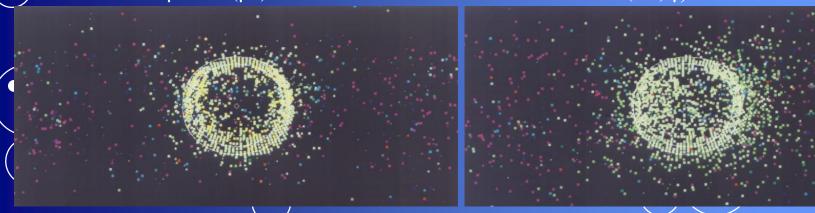
Proton lifetime predictions

•

Model	Mode	Prediction (years)
Minimal SU(5)	$p \rightarrow e^+ \pi^0$	$10^{28.5} \sim 10^{31.5} [1]$
Minimal SO(10)	$p \rightarrow e^+ \pi^0$	$10^{30} \sim 10^{40} [2]$
Minimal SUSY SU(5)	$p \rightarrow \bar{\nu} K^+$	$\leq 10^{30}$ [3]
SUGRA SU(5)	$p \rightarrow \bar{\nu} K^+$	$10^{32} \sim 10^{34} [4]$
SUSY SO(10)	$p \rightarrow \bar{\nu} K^+$	10 ³² ~10 ³⁴ [5]
SUSY SO(10)	p→νK+	10 ³² ~10 ³⁴ [5]

 $> 10^{30}$ years !

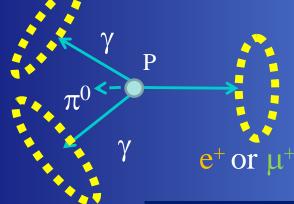
It's REALLY rare decay.


C→ Nucleon Decay Experiment 2. Super-Kamiokande Detector

Location: Kamioka mine, Japan. ~1000 m under ground.
Size: 39 m (diameter) x 42 m (height), 50kton water. Optically separated into inner detector (ID) and outer detector (OD, ~2.5 m layer from tank wall.)
Photo device: 20 inch PMT (ID), 8 inch PMT (OD, veto cosmic rays).
Mom. resolution: 3.0 % for e 1 GeV/c (4.1%: SK-2).
Particle ID: Separate into EM shower type (e-like) and muon type (μ-like) by Cherenkov ring angle and ring pattern.

μ -like (μ^{\pm})

e-like (e \pm , γ)



Collected 328kton • year data in total

Water Cherenkov Detector for Nucleon Decay searches

- Easy to construct large detector.
 - Need huge number of nucleons.
 - > SK: 22.5kton in fiducail = 7.5×10^{33} protons.
- High efficiency and low uncertainty.
 - Mesons from proton decay in oxygen suffer from nuclear interactions (absorption, scattering, charge exchange ...) which are dominant sources of inefficiency.
 - 2 hydrogens in water act as free proton, free from nuclear interactions.
- Backgrounds (atmospheric v) are well understood.
 ➢ SK is the world largest Neutrino Detection Experiment.

3. $p \rightarrow e^+ \pi^0$, $\mu^+ \pi^0$ mode

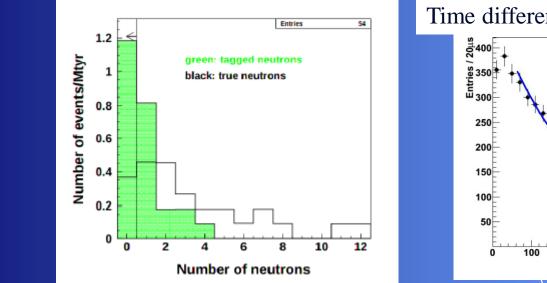
Event features;

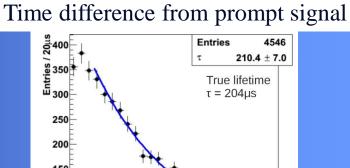
e⁺, µ⁺ and π⁰ are back-to-back (459 MeV/c)
π⁰ → 2 γs : all particles can be detectable.
→ Reconstruct proton mass and momentum.

Selection; • Fully contained, VTX in fiducail volume.

• 2 or 3 ring

New technique 1: Neutron tag


- Most of atmospheric v BKG are accompanied by neutron.
- A neutron is captured by hydrogen (~200 μ sec) and emit γ ray;


$$n+p \rightarrow d+\gamma (2.2 \text{ MeV})$$

- New electronics installed in SK4 enables to record all hits including this γ ray.
- Search for hit cluster N \geq 7 in 10 ns window after prompt signal, and neutrons are selected by neural network.
- Eff. 20.5 %, BKG 1.8 %.

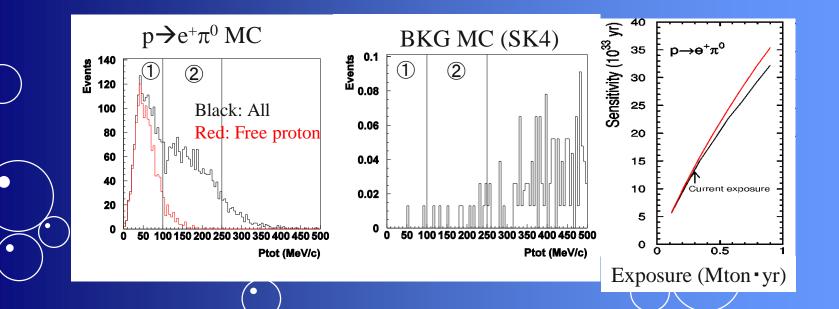
0

About half of backgrounds can be rejected by requiring no neutron.

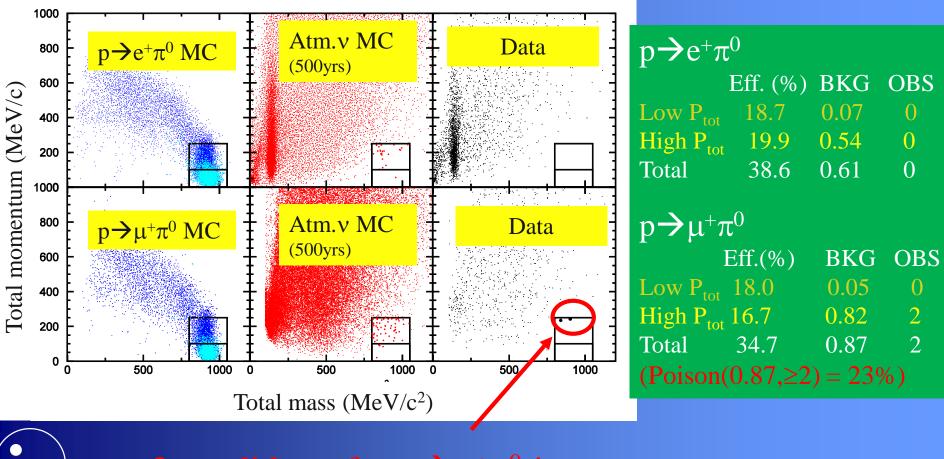
300

200

500


 $\Delta T(\mu s)$

New technique 2: two box analysis

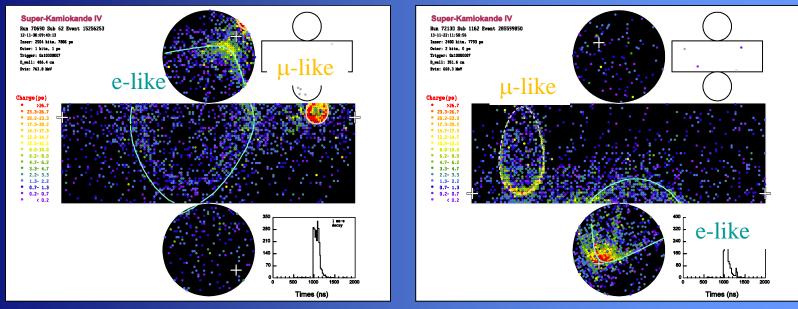

- Signal box defined by 800<Mtot<1050 MeV/c² and Ptot<250MeV/c is divided into two regions;
 - 1 Lower box: Ptot<100 MeV/c
 - ✓ Signal: Dominated by free proton(H) decay, free from nuclear effects → Almost BKG free.
 - ② Higher box: 100≤Ptot<250 MeV/c
 - Signal: Dominated by bound proton (O) decay, more uncertainty due to nuclear effects. More BKG.

10

• Achieve better sensitivity.

Results

2 candidates for $p \rightarrow \mu^+ \pi^0$!


•

11_

Observed events (both are 2-ring events)

1st event

2nd event

	TotMass (MeV/c ²)	TotMom. (MeV/c)	Pe (MeV/c)	Pμ (MeV/c)	Ang. (deg.)
1 st	903	248	375	551	158
2^{nd}	832	238	461	391	149

Note1: Cut: Ptot <250MeV/c, they were really close to boundary. Note2: The 2nd event will go out from signal box with updated gain correction.

Systematic errors

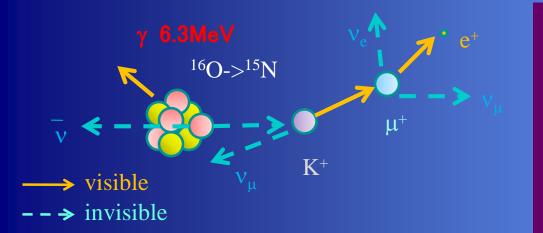
		$p \rightarrow e^+ \pi^0$		$p \rightarrow \mu^+ \pi^0$	
		low P_{tot}			high P_{tot}
Eff.					
	π -FSI	2.8	10.6	2.9	12.1
	Corr. decay	1.9	9.1	1.7	9.0
	Fermi mom.	8.5	9.3	8.0	9.6
	Reconstruction	4.6	5.6	3.7	3.3
	Total	10.2	17.7	9.4	18.2
BKG					
	Flux	7.0	6.9	7.0	7.0
	Cross section	14.5	10.4	8.4	7.8
	π -FSI	15.4	15.4	14.2	14.4
	Reconstruction	21.7	21.7	21.7	21.7
	(neutron tag)	10	10	10	10
	Total (I/II/III)	31.2	29.4	28.1	28.1
	(IV)	32.7	31.1	29.9	29.8

Life time limt (90% CL) with 306kton•yrs data

 $p \rightarrow e^{+}\pi^{0}$ > 1.6x10³⁴ years $p \rightarrow \mu^{+}\pi^{0}$ > 7.7x10³³ years (will be published soon).

Coming soon: Improved reconstruction tool.

- Current one: decide step by step: VTX, # of rings, PID, Mom ...
- > New method: Fit everything at once by maximum likelihood.
- \blacktriangleright Higher resolution \rightarrow Expect to improve discovery potential.


4. p $\rightarrow \bar{\nu} K^+$ mode

General features

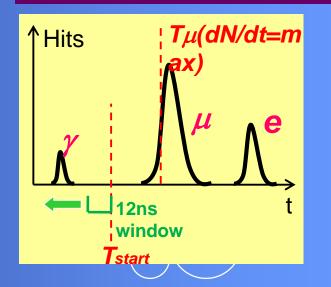
- \bar{v} cannot be detected = not reconstruct proton mass and momentum.
- Momentum of K⁺ ~ 339MeV/c: below Cherenkov threshold and not visible by SK.
- K⁺ stops in water and decay with $\tau = 12ns$:
 - $\succ K^+ \rightarrow \nu \mu^+: Br. 64 \% \text{ (Method A)}$
 - \succ K⁺ $\rightarrow \pi^+\pi^0$: Br. 21 % (Method B)
- In these two body decay case, decayed particles have monochromatic momentum.

Method (A) $K^+ \rightarrow \mu^+ \nu_{\mu}$

Selection:

- 1 µ-like ring with decay-e.
- $215 < P\mu < 260 \text{ MeV/c}$
- Search Max hit cluster by sliding time window (12ns width);
- $-8 < N\gamma < 60$ hits for SK-1,3,4
 - $4 < N\gamma < 30$ hits for SK-2
- T_{μ} - T_{γ} < 75 nsec
- No neutrons (only for SK-4)

Event features;


• K⁺ is invisible, stops and 2 body decay ($P_{\mu} = 236 \text{ MeV/c}$).

\rightarrow Excess in P_µ.

• Proton in ¹⁶O decays and excited nucleus emits 6 MeV γ (Prob. 41%, not clear ring).

15

=> Tag γ to eliminate BKG.

Results of Method (A)

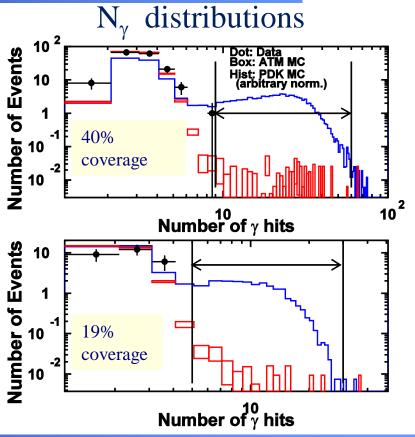
Black: Data Red: ATM MC Blue: PDK MC

16

	Exp. (kton•yr)	Eff(%)	BKG	Data	يع ^{10 2}
SK1	91.7	7.9±0.1	0.08	0	IC ACCURACIÓN DE LA COMUNICIÓN DE LA COM
SK2	49.2	6.3±0.1	0.14	0	Number of Events
SK3	31.9	7.7 ± 0.1	0.03	0	
SK4	133.5	8.5 ± 0.1	0.14	0	-
Total	306.3		0.39	0	ents 10
st u a 140 A J Jo 120 Jaquinu 100			Black: Data Red: ATM M Blue: PDK	мс	10 Number of Events 10 10 5 10 5

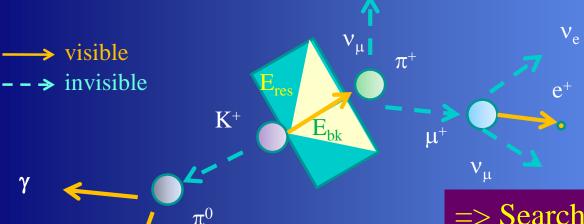
•

60 40 20


0 L 200

225

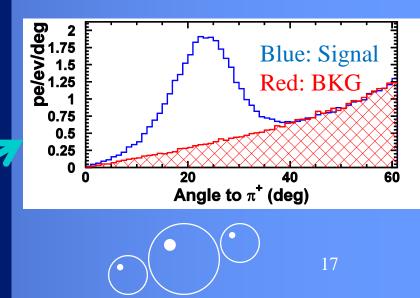
250 Ρ_μ (MeV/c)


275

300

No candidates and no excess in P_{μ} .

Method (B) $K^+ \rightarrow \pi^+ + \pi^0$


205 MeV/c

Event features; • Br. 21 %. • π^0 and π^+ are back-to-back and have 205 MeV/c. • $P\pi^+$ is just above \check{C} thres.

(not clear ring).

=> Search for monochromatic π^0 with backward activities.

- 1 or 2 e-like rings with decay-e.
- $85 < M\pi^0 < 185$ MeV.
 - $175 < P\pi^0 < 250 \text{ MeV/c}.$
 - E_{bk} : visible energy sum in 140-180 deg. of π^0 dir,
 - in 90-140 deg,
 - E_{res}: L_{shape}: Likelihood based on charge profile
 - $10 < E_{bk} < 50 \text{ MeV}$
 - $E_{res} < 12 \text{ MeV} (20 \text{ MeV for 1ring})$
 - $L_{shape} > 2.0 (3.0 \text{ for } 1 \text{ ring})$
 - No neutrons

Results of Method (B)Exp.
(kton·yr)Eff(%)BKGDataX191.7 7.8 ± 0.1 0.180X249.2 6.7 ± 0.1 0.170

0.09

0.12

0.56

0

0

0

 7.9 ± 0.1

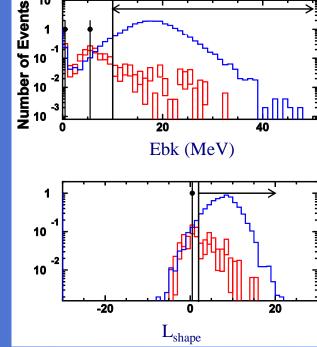
 9.0 ± 0.1

\implies No candidates.

SK1

SK2

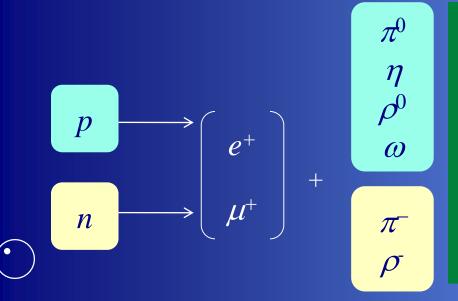
SK3


SK4

Total

31.9

133.5


306.3

p→ $\bar{\nu}$ K⁺ Lifetime limit (90% CL) combining Method (A) and (B): > 6.6 x10³³ yrs @306 kton•yr

Black: Data Red: ATM MC Blue: PDK MC

5. Other modes N→ charged anti-lepton +meson

- Several mode in which a nucleon decays into a charged lepton and a meson (not only π⁰) are proposed.
- Those searches were published with 141kton•yr exposure (PRD 85 112001,(2012)).

Updated with 317kton•yrs exposure . ✓ Reduce BKG in SK4 by neutron tag.

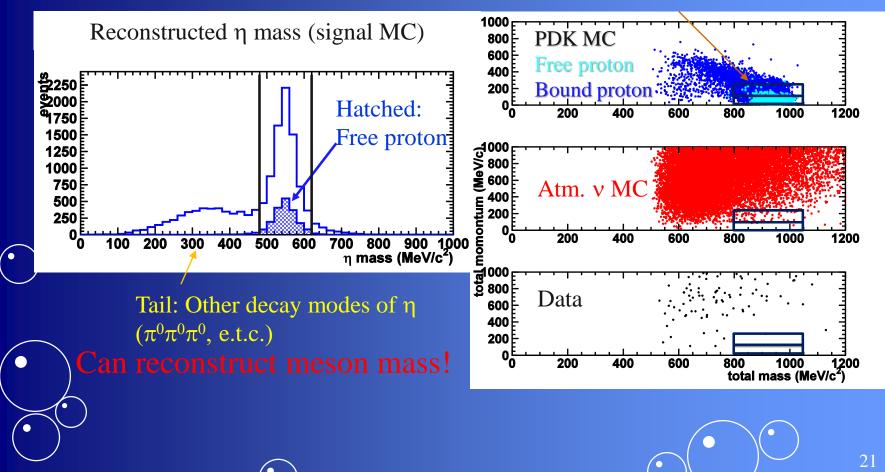
- ✓ Two box analysis for $p \rightarrow e^+/\mu^+ + \eta^0$, $\eta^0 \rightarrow 2\gamma$
- \checkmark And so on .

Event selection

1) Select rings (+ Michel electron cut)

$N \rightarrow$	lepton	meson	meson decay mode	(Br.)
$p \rightarrow$	$e^+~(\mu^+)$	π^0	$\pi^0 ightarrow 2\gamma$	(98.8%)
$p \rightarrow$	$e^+~(\mu^+)$	η	$\eta ightarrow 2\gamma$	(39.3%)
			$\eta \rightarrow 3\pi^0$	(32.6%)
$p \rightarrow$	$e^+~(\mu^+)$	$ ho^0$	$\rho^0 \to \pi^+\pi^-$	$(\sim 100\%)$
$p \rightarrow$	$e^+~(\mu^+)$	ω	$\omega ightarrow \pi^0 \gamma$	(8.9%)
			$\omega \to \pi^+ \pi^- \pi^0$	(89.2%)
$n \rightarrow$	e^+ (μ^+)	π^{-}		
$n \rightarrow$	$e^{+}(\mu^{+})$	ρ^{-}	$ ho^- ightarrow \pi^- \pi^0$	(~100%)

Primary e/μ ring and \rightarrow 2 e-like rings \rightarrow 2 e-like rings \rightarrow 4, 5 e-like rings \rightarrow 2 μ -like rings \rightarrow 2,3 e-like rings \rightarrow 2 e-like and 1 μ -like \rightarrow 2-elike and 1 μ -like


2) Reconstruct meson mass η : 480 ~ 620 MeV/c² ρ^{0}, ρ^{-} : 600 ~ 900 MeV/c² ω : 650 ~ 900 MeV/c²

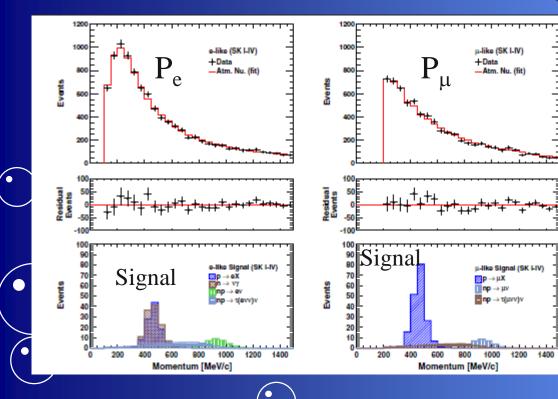
•

3) Reconstruct nucleon mass and momentum mass: $800 \sim 1050 \text{ MeV/c}^2$ (600~800MeV for p→ew, 450~700MeV for p→µw) momentum: < 250 MeV/c (<150 MeV/c for p→en(3 π^0),ep,ew($\pi^0\gamma$), <200 MeV/c for p→e/µw($\pi^+\pi^-\pi^0$)

Example: $p \rightarrow e^+\eta$, $\eta \rightarrow 2\gamma$

Use two box: Ptot<100 MeV/c, 100≤Ptot<250 MeV/c

•


Results

Mode	Eff.(%)	BKG	Obs.	Poisson Prob ≥Obs (%)	Lifetime limit (10 ³³ yrs)
р→е⁺η	18.3	0.78	0	-	10.0 (prev.4.2)
p→e ⁺ ρ ⁰	3.7	0.64	2	13.5	0.72 (0.71)
p→e ⁺ ω ⁰	4.9	1.35	1	74.1	1.6 (0.32)
n→e ⁺ π ⁻	12.7	0.41	0	-	5.3 (2.0)
n→e ⁺ ρ ⁻	1.4	0.87	4	1.2	0.03 (0.07)
p→μ⁺η	21.3	0.85	2	20.9	4.7 (1.3)
$p \rightarrow \mu^+ \rho^0$	1.8	1.3	1	72.7	0.57 (0.16)
$p \rightarrow \mu^+ \omega^0$	6.7	1.09	0	-	2.8 (0.78)
$n \rightarrow \mu^+ \pi^-$	12.2	0.77	1	53.7	3.5 (1.0)
n→μ+ρ-	1.1	0.96	1	61.7	0.06 (0.036)

Consistent with BKG, lifetime limits improved factor 2~3 in most of modes.

$\underbrace{\text{PRL 115, 121803(2015)} }_{\text{PRL 115, 121803(2015)} }$

- Search for
 - \triangleright p→ e⁺/μ⁺ + X, n→γ+X (X: invisible massless particle, ΔB=1)
 - pn→e⁺/μ⁺/τ⁺ + ν (di-nucleon decay, ΔB=2)
- Test momentum distributions of single ring events.

- Data and Atm.v MC agree well.
- Lifetime limits: fit data by Atm.v and signal MC.
- \triangleright p→e⁺X:> 7.9x10³² yrs
- \triangleright p→µ⁺X: > 4.1x10³² yrs
- \succ n→γX: > 5.5x10³² yrs
- > pn→e⁺v: > 2.6x10³² yrs
- \succ pn→µ⁺ν: > 2.2x10³² yrs
- \succ pn→τ⁺ν: > 2.9x10³² yrs

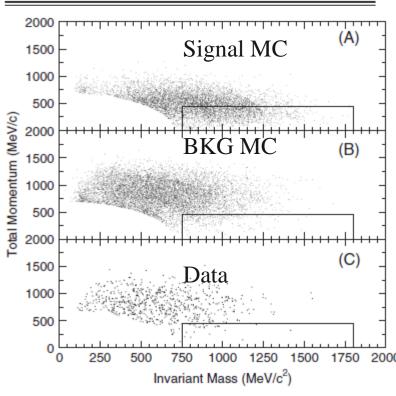
23

PRD 91, 072009 (2015) Di-nucleon decays: NN $\rightarrow \pi\pi$

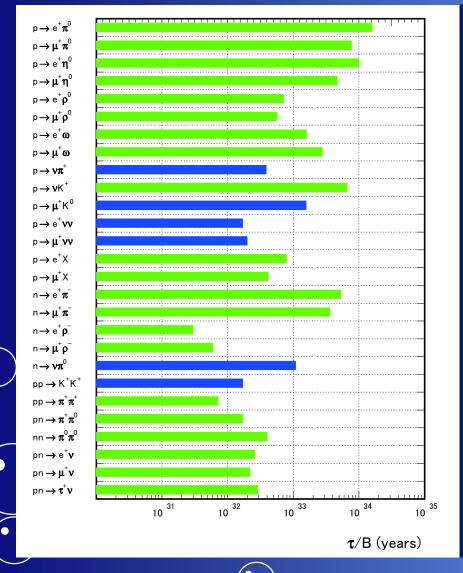
- Search for ¹⁶O(pp) \rightarrow ¹⁴C $\pi^+\pi^+$, ¹⁶O(pn) \rightarrow 14N $\pi^+\pi^0$, ¹⁶O(nn) \rightarrow ¹⁴O $\pi^0\pi^0$.
- ΔB=2
- Tag pions in back-to-back. Pions are affected by nuclear interactions in nucleus and water.
 - Vise Boosted Decision Tree for $pp \rightarrow \pi^+\pi^+$ and $pn \rightarrow \pi^+\pi^0$
- For nn $\rightarrow \pi^0 \pi^0$, use total mass and total momentum cuts, as same as $p \rightarrow e^+ \pi^0$.

	Mode	Eff.(%)	BKG	Obs		Mtot vs Ptot for nn $\rightarrow \pi^0 \pi^0$
•					$(10^{32} yr)$	nn → π ⁰ π ⁰ SK-I-IV MC atm. v SK-I-IV MC SK-I-IV Data 9 1800
	$pp \rightarrow \pi^+ \pi^+$	5.9	4.5	2	0.72	0 1600 - 1400 - min 1200 - 1000 -
	pn $\rightarrow \pi^+ \pi^0$	10.2	0.75	1	1.7	
	nn $\rightarrow \pi^0 \pi^0$	21.1	0.14	0	4.0	⁻ 200 0 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000 Total Invariant Mass (MeV/c ²)
		Obse	ervati	on is	consiste	ent with BKG.
			•			

PRD 91, 072006 (2015)


nn oscillation

• $\Delta B=2$

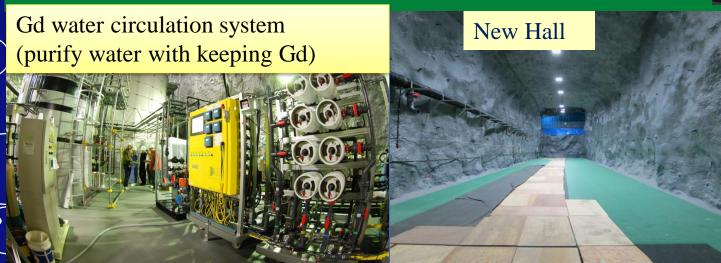

- n annihilates immediately.
- Apply total momentum ($P_{tot} < 450$ MeV/c) and total mass cut (750 < $M_{tot} < 1800$ MeV/c²) to multi-ring.
- Use only SK1 data (91.7kton yr).
 ➢ Eff. 12.1 %
 - BKG: 24.1 events
 - Observed: 21 event
- Lifetime limt: > 1.9x10³²yrs
 → oscillation time (free neutron): > 2.7x10⁸ sec

(using nuclear suppressing factor by Freedman&Gil, PRD 78, 016002(2008), with 20~30% theoretical error)

$\bar{n} + p$		$\bar{n} + n$	
$\pi^+\pi^0$	1%	$\pi^+\pi^-$	2%
$\pi^{+}2\pi^{0}$	8%	$2\pi^0$	1.5%
$\pi^{+}3\pi^{0}$	10%	$\pi^{+}\pi^{-}\pi^{0}$	6.5%
$2\pi^{+}\pi^{-}\pi^{0}$	22%	$\pi^{+}\pi^{-}2\pi^{0}$	11%
$2\pi^{+}\pi^{-}2\pi^{0}$	36%	$\pi^{+}\pi^{-}3\pi^{0}$	28%
$2\pi^+\pi^-2\omega$	16%	$2\pi^+ 2\pi^-$	7%
$3\pi^+2\pi^-\pi^0$	7%	$2\pi^+2\pi^-\pi^0$	24%
		$\pi^+\pi^-\omega$	10%
		$2\pi^+2\pi^-2\pi^0$	10%

5. Summary

- Update nucleon decay results by more than 0.3 Mton • year exposure (green in the left figure).
- Super-Kamiokande can cover large number of decay modes.
- All of them are the most stringent limits on nucleon lifetime.
- We observed some candidates, but still consistent with expected backgrounds and no evidences of nucleon decay have been observed.

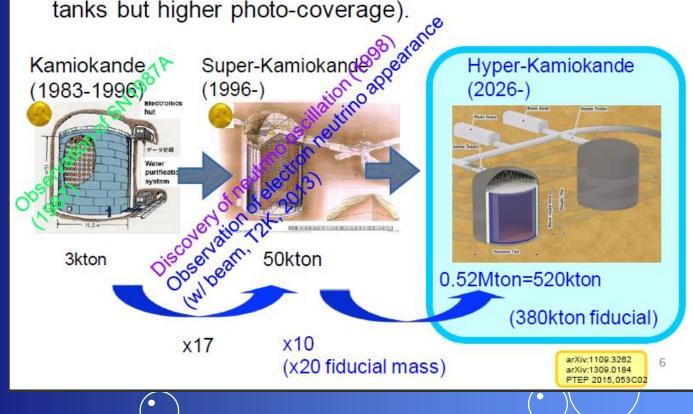

5. Future prospects Near term: SK-Gd project

- Need more exposure, but suppress background.
- We have learned neutron tagging is a powerful tool to reject atmospheric neutrino backgrounds.
 - 20.5% tagging efficiency of neutron capture by hydrogen (2.2 MeV γ).
 - > Atmospheric v background can be reduced to $\sim 50\%$
- Planning to add Gd into water (SK-Gd project).
 - $\sim 0.2\% \text{ Gd}_2(\text{SO}_4)_3$
 - > Emit 8 MeV γ s after neutron capture by Gd.
 - Expect higher neutron tagging efficiency ~ 80%!

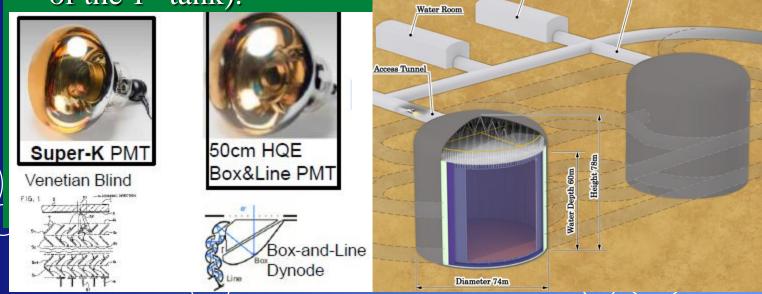
• Several R&D towards SK-Gd are going on.

- Built test tank (EGADS).
- Developed Gd dissolved water purification system.
- Light attenuation check.
- and more.
- Excavated a new hall for water purification system.
- Expect to start refurbishment in 2018.
 - T2K is ongoing now, but they also have plan to upgrade accelerator.
- Stay tuned !

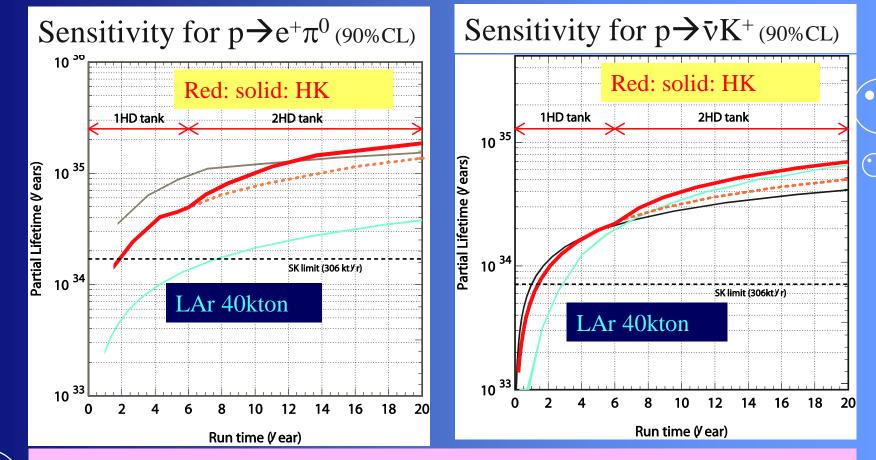
•


200 m³ tank with 240 PMTs

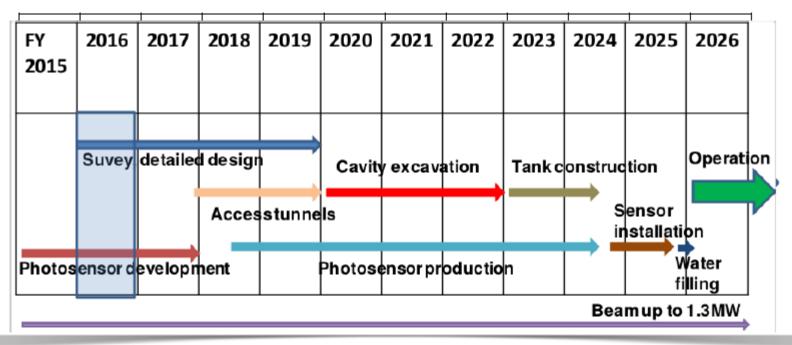
Longer term: Hyper-Kamiokande project


Kamiokande Evolution

- Three generations of large Water Cherenkov in Kamioka.
- Tank design for Hyper-Kamiokande optimized (smaller tanks but higher photo-coverage).


Current baseline design

- Photosensor: Box&Line PMT, x2 photon counting efficiency, ¹/₂ time resolution than SK PMT.
- Photo-coverage: 40 %, same as the current SK.
- Tank size: 60m (H)x74m(D), upright cylindrical.
- Number of tank: 2 (the 2nd tank will be built after 6 years of the 1st tank).


30

Expected reach in nucleon decay

After 10 years run, sensitivity of HK reaches to 1×10^{35} years for $e^+\pi^0$ and 4×10^{34} years for $v K^+$.

The Hyper-Kamiokande Timeline

Let's built Hyper-Kamiokande

- Forming proto-collaboration.
- If you are interested in, contact to me.