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The Moon plays a major role in maintaining the Earth's magnetic field

1- Thermal state of the core: A puzzling paradox
2- Current core temperature : Still quite hot !
3- Early core temperature after crystallization of the magma ocean
4- Mechanical forcings are required to maintain the geodynamo alive

Fluid injection during precession
(Vanyo, 2004)



Magnetic spectral energy density profiles

Aubert et al., 2017
Radial magnetic field at core surface

View from
pole

View from
equator

The Earth magnetic field is produced in the liquid outer core



Three possible mechanisms to produce motions in the core:

- Mechanical forcing

- Thermal convection
Generated by a heat flux out of the core of 5 to 15 TW 
High thermal conductivity of the liquid Fe-alloy support high value (10-15 TW)

- Solutale convection
Produced by growth of an inner core relatively depleted in light elements
or by a flux of atoms at the core-mantle boundary

Precession and tides at the CMB stir the outer core

The classical model suggests:

- Thermal convection

- Solutale convection

- Mechanical forcing

The heat flux out of the core could help inducing mantle convection

Seems reasonable, since the Earth’s core is partially solidified

It may play a role, but appeared not necessary

What is the energy source to maintain the Geodynamo ?

=> Discarded



That was 

«happy days» !!!

Evolution of temperature 
at the core-mantle boundary 

along the Earth’s history

Time (Gy)

T(CMB)

Ti

Moon-Forming 
impact

Today

Enough heat flux to run the geodynamo 
           by thermal convection !

Tf

Also k, thermal conductivity 
of the liquid Fe-alloy in 
the outer core, was 
poorly constrained

15 years ago, the thermal state of deep Earth was poorly constrained
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High thermal conductivity, Nature, 2016

High thermal conductivity, Nature, 2014

Low thermal conductivity, Nature, 2016

High thermal conductivity, 2013

Controversial value of k, thermal conductivity of the liquid outer core



With years, two major constraints arose...

#

# The thermal conductivity of the Fe-alloy in the outer core is 
at least twice than previously thougth.

=> A geodynamo maintained by thermal convection requires
a large heat loss at the core-mantle boundary (10-15 TW)

The CMB temperature remains very high today. It is at ~4000 K, 
just below the mantle solidus

=> In the classical «cooling» scenario, the lowermost mantle 

Labrosse et al., Nat. 2007

should have been largely molten in the past !



Labrosse, 2015, see also Davies et al., 2015

The model produces :
- Hot CMB today
- A current CMB heat flux of 15 TW

    

Implications :
- T(CMB) above the mantle liquidus for more than 1 Gy

Also, the model predicts that the 
geodynamo should stop very soon: 
«Tomorrow», if 15 TW is the critical 
heat flux along the adiabat...

- T(CMB) above the mantle solidus for up to 3.5 Gy
- Age of the inner core is less than 1 Gy
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What is the current core temperature
at the core mantle boundary ?
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McNamara et al., 2010Ultra-low
velocity 
zones

• ULVZs are 
small (~10 km 
tall, ~100 km 
across) dense 
(~10%), slow 
(>10% 
reduction) 
anomalies

• Might be 
preferrentially
associated 
with the edges 
of the LLSVPs

• Different size / 
character than 
“Perm-type” 
anomaly.



e.g. Rost et al., 2005

Partial melting today in the lowermost mantle: Different models

Melting of the mean mantle 

Melting of the subducted slabs 
Andrault et al., 2014
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New melting curve determination using X-ray diffraction
=> using the diamond anvil cell



Special DAC design

XRF Measurement 
on ID27 (ESRF)
(Andrault et al., 2012)

Petitgirard et al, RSI 2012

Mg-Pv 
liquidus phase

Liquid ball

20 μm
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Secular cooling can produce thermal convection and core motions
 It requires a CMB heat flux up to 10-15 TW
 Which translates into an initial CMB temperature larger than 7000 K  (Labrosse, 2015)
            see also (Nakagawa & Tackley, 2005, 2010)
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The current temperature at the CMB is well constrained

Why does the CMB temperature is still ~at the mantle solidus after ~4.5 Gy ?
What has been its evolution along geological ages ?
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What was the early core temperature
after the giant Moon-forming impact 

and the crystallization of the magma ocean ?



We modeled heat transfert in the primitive mantle 
- Using a 1D model (i.e. lateraly averaged) 
- Including the heat from the core

Heat conduction equation: = density 
Cp=heat capacity 
T=temperature 
t=time 
H=radiogenic heating 
 
k=thermal conductivity 
kc=intrinsic conductivity 
kv=eddy conductivity 
 
L=magma ocean thickness 
Ra=Rayleigh number 

=turbulence power 
T=T-Tad 

 

g=gravity 
=dynamic viscosity 

 
=melt fraction 

 
Tsol=solidus temperature 
Tliq=liquidus temperature 

k = kc +kv kv (L, Ra , T )

= f ( )



Variable  and  non-dimensional  parameter  values  for  numerical  models.

Melt density ρm A-model: 2684–5274 kgm − 3 Computed from Thomas and Asimow (2013)
F-model: 2679 − 5378 kgm − 3

Heat capacity Cp A-model: 1742 J kg − 1 K− 1 Computed from Thomas and Asimow (2013)
F-model: 1800 J kg − 1 K− 1

Thermal expansion coe�cient α A-model: 1 .3 × 10− 5–7 .9 × 10− 5 K− 1 Computed from Thomas and Asimow (2013)
F-model: 2 × 10− 5–9 .6 × 10− 5 K− 1

Viscosity of solid phase ηs From Eq. (8) with ηs,0 = 256 Pa s and B = 25.17
Viscosity of the magma ocean η 1–10 21 .qEmorFsaP (7)
Total conductivity k 5–10 7 Wm − 1 K− 1 = kc + kv

Rayleigh number Ra at t = 0: 1 × 1027 –3 × 1027 Computed from Eq. (3)
Prandtl number Pr 350–3 .6 × 1024 = Cpη/kc
Reynolds number Re at t = 0: Re ~ 109 From Solomatov (2007)

Computed adiabatic gradients compared with solidus and liquidus profiles

Set of input parameters



Rate of cooling after the Moon-forming impact
Rate of mantle cooling depends �rstly on the viscosity of the magma ocean (through kV)

Core temperature
in the magma ocean as a function of time



The rate of core cooling depends �rstly on the 
thickness of the thermal boundary layer (eTBL) 
located in the mantle, just above the core.
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            see also (Nakagawa & Tackley, 2005, 2010)
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Why does the CMB temperature is still ~at the mantle solidus after ~4.5 Gy ?
What has been its evolution along geological ages ?



Three possible mechanisms to produce motions in the core:

Not enough cooling

What is it ?This mechanism is required to explain:
- Early Moon and Mars magnetic fields
- Current magnetic field on Ganymede

Does it brings enough energy ?

Can contribute, but cannot do the job alone

- Thermal convection

- Solutale convection

- Mechanical forcing

Requires a heat flux of 5 to 15 TW out of the core
High thermal conductivity of the liquid Fe-alloy support high thermal flux

Produced by growth of an inner core relatively depleted in light elements
or by a flux of atoms at the core-mantle boundary

Precession and tides at the CMB stir the outer core

What is the energy source to maintain the Geodynamo ?



Precession (Noir, 2000) Tides (Sauret, 2013)

Fluid injection during precession
(Vanyo, 2004)

Antisymmetric component of radial velocity
in a simulation (Lorenzani & Tilgner, 2001)

Le Bars et al., 2015

Outer-core flows driven by mechanical forcings



Role of tidal distorsion
Experimental set-up at IRPHE

Sauret et al., 2014

R=10cm

Rotation up 
to +/-160rpm 

Working fluid = water

3 dimensionless parameters 
β= tidal bulge/radius  = 0.09
Ωorbit= orbital/spin rares = -0.053
E= Ekman number    = 9.5 10-6 






Role of libration
Experimental set-up at spinlabucla

Grannan et al., 2014









 
 

Energy Budget: Running the Geodynamo by Mechanical forcings

3.7 TW is continuously injected into the Earthfrom Earth-Moon-Sun orbital system   
(Wunsch and Ferrari, 2004):

- 0.2 TW dissipated into Earth’s atmosphere and mantle
- 1 TW is lost to the deep ocean 
- Up to 2 TW additional tidal dissipation in shallow seas (Ferrari, 2015).

=> Hence, 0.5 to 1 TW, or even more (!) could be used to produce motions in the outer core

From 0.1 to 2 TW is required to induce a geodynamo in outer core (e.g. (Christensen and 
Tilgner, 2004)). This is related the amount of motion required in the outer core

Note : Significantly more energy was injected into the Earth in the past.



Figure courtesy of A. Grannan, SpinLab, UCLA

Time evolution of the mean kinetic energy

Time evolution during tidal distortion  (Le bars et al., 2010)

Mechanical forcing produces Instablities and turbulences 



Ernst and Bleeker (2010)
Arndt and Davaille (2013)

Speculative 

implications...

Martin et al. (2014)
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SUMMARY:

The magma ocean solidification is achieved in 100-200 ky (viscous mantle at all depths)
 After this delay, the maximum possible core temperature at CMB is ~4450K

Today, the core temperature at CMB is 4000-4150 K
 Core cooling in ~4.4 Gy is insufficient to maintain geodynamo by thermal convection

Mechanical forcings may be a major ingredient to maintain the geodynamo 
 They are associated with secular changes of astronomical parameters
 in the Earth-Moon-Sun system

Even if (i) thermal convection and (ii) solutale
 convection still contribute today (?), the
 Geodynamo would have stopped earlier
 in absence of a Moon.

Searching for life on extrasolar planets ? 
 Favor planets with a satellite !

Already ~50 years ago...

W.V.R. Malkus, Science, 1968



Maximum possible 
temperature

5500 K

Presence of a thick refractory layer of bridgmanite
at the center of the lower mantle ? 

What if chemical segregation occurs?
Then, there would be reaction where
Bg and the MOs are in contact !

The MOs should be enriched in 
incompatible elements

Implication: The core temperature after 
the Moon-Forming impact 
cannot be higher than ~5500 K
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