

CPT SYMMETRY AND GRAVITY TESTS WITH ANTIHYDROGEN

Chloé Malbrunot ^{1,2}

¹ CERN, Geneva, SWITZERLAND ² Stefan Meyer Institute for Subatomic Physics, Vienna, AUSTRIA

 $\underline{n(B)} - n(b)$ -9< 10 $n(\overline{\gamma}$

13.8 billions years ago :

Today :

Courtesy: A. Kellerbauer

NOVEMBER 25TH 2016

- IPHC SEMINAR, STRASBOURG-

NOVEMBER 25TH 2016

- IPHC SEMINAR, STRASBOURG-

Courtesy: B. Juhasz CHLOÉ MALBRUNOT

Courtesy: C. Smorra

- IPHC SEMINAR, STRASBOURG-

NOVEMBER 25TH 2016

 $\bar{m}_g = \bar{m}_i$ apple anti-apple g? gearth earth

- IPHC SEMINAR, STRASBOURG-

Measurement of atomic transitions

Measurement of gravitational interaction

 $\frac{\Delta\nu_{\rm HFS}}{\nu_{\rm HFS}} = 7 \times 10^{-13}$

CPT tests

WEP test

 $g \stackrel{?}{=} \overline{g}$

Antihydrogen: ideal test body for fundamental physics

NOVEMBER 25TH 2016

- IPHC SEMINAR, STRASBOURG-

NOVEMBER 25TH 2016

- IPHC SEMINAR, STRASBOURG-

ANTIHYDROGEN EXPERIMENTS @ CERN

NOVEMBER 25TH 2016

0

- IPHC SEMINAR, STRASBOURG-

>20 YEARS OF H EXPERIMENTS @ CERN

00000000

20 YEARS OF H EXPERIMENTS @ CERN

e+

NOVEMBER 25TH 2016

- IPHC SEMINAR, STRASBOURG-

NOVEMBER 25TH 2016

- IPHC SEMINAR, STRASBOURG-

NOVEMBER 25TH 2016

- IPHC SEMINAR, STRASBOURG-

NOVEMBER 25TH 2016

- IPHC SEMINAR, STRASBOURG-

ANTIHYDROGEN PRODUCTION IN ASACUSA e+ TRAP

0

0

ANTIHYDROGEN PRODUCTION IN ASACUSA e+ TRAP

0

0

EITHER TRAP ANTIHYDROGEN...

NOVEMBER 25TH 2016

- IPHC SEMINAR, STRASBOURG-

OR MAKE A BEAM OF ANTIHYDROGEN...

ASACUSA SPECTROSCOPY FOR CPT

AEGIS FALL OF ANTIHYDROGEN

MEASUREMENT PRINCIPLE

- IPHC SEMINAR, STRASBOURG-

CHLOÉ MALBRUNOT

NOVEMBER 25TH 2016

NOVEMBER 25TH 2016

- IPHC SEMINAR, STRASBOURG-

H CHARACTERIZATION **H** Detector

Solid angle (mixing point - detector): ~0.004%

000

Annihilation: BGO crystal (position sensitive calorimeter)

read out by MchPMT array of 16x16 for position resolution

- 2 layers hodoscope

- 32 (8x4) scintillator bars each
- SiPMs on each side

- axial resol. by time difference (vertex reconstruction capability

- fast timing enables cosmic discrimination
- >50% efficiency, <1% false IDs

- IPHC SEMINAR, STRASBOURG-

H CHARACTERIZATION **H** Detector

Solid angle (mixing point - detector): ~0.004%

Annihilation: BGO crystal (position sensitive calorimeter)

read out by MchPMT array of 16x16 for position resolution

- 2 layers hodoscope

- 32 (8x4) scintillator bars each
- SiPMs on each side

- axial resol. by time difference (vertex reconstruction capability

- fast timing enables cosmic discrimination
- >50% efficiency, <1% false IDs

NOVEMBER 25TH 2016

BGO

crystal

00000

. • •

- IPHC SEMINAR, STRASBOURG-

H CHARACTERIZATION **H** Detector

<u>Solid angle (mixing point - detector): ~0.004%</u>

Annihilation: BGO crystal (position sensitive calorimeter)

read out by MchPMT array of 16x16 for position resolution

- 2 layers hodoscope

- 32 (8x4) scintillator bars each
- SiPMs on each side

- axial resol. by time difference (vertex reconstruction capability

- fast timing enables cosmic discrimination

->50% efficiency, <1% false IDs

NOVEMBER 25TH 2016

BGO

crystal

Internal CUSP field ionizer to investigate the time structure of antihydrogen formation Field ionizer before the detector : detection of n<43 (some n<29)

NEXT:

1) Further characterization of the antihydrogen beam : Quantum state distribution, velocity, polarisation

2) Characterization of spectroscopy beamline

NOVEMBER 25TH 2016

- IPHC SEMINAR, STRASBOURG-

ASACUSA (ANTI)HYDROGEN **BEAMLINE**

- IPHC SEMINAR, STRASBOURG-

ASACUSA (ANTI)HYDROGEN BEAMLINE

MEASUREMENT OF SIGMA "strip-line" cavity design

MEASUREMENT OF SIGMA "strip-line" cavity design

- IPHC SEMINAR, STRASBOURG-

 $\Delta\nu\,/\,\nu=2.7~ppb$

 $\nu_{\rm HF} = 1\ 420\ 405\ 748.4(3.4)(1.6)\ {\rm Hz}$

Robust lineshape fit Extraction of amplitude of oscillatory field, velocity and velocity spread

The spectroscopy apparatus if fully commissioned

ppm result with antihydrogen should be in reach if enough statistics can be gathered

MEASURING Π RESONANCE

New coil and new 3-layers Mu metal shielding

NOVEMBER 25TH 2016

- IPHC SEMINAR, STRASBOURG-

MEASURING IT RESONANCE

- π and σ sigma can be measured "simultaneously"
- π is better motivated for SME test
- Measure sidereal variations and different angles
- Improved precision using Ramsey
- Measurement with Deuterium

00000000

.

NOVEMBER 25TH 2016

- IPHC SEMINAR, STRASBOURG-

ANTIHYDROGEN PRODUCTION IN AEGIS

1. **o-Ps** production by impact of e+ on SiO₂ target (nano-porous insulator material)

2. Ps **laser excitation** into Rydberg levels

Formation rate enhanced

$$\sigma \propto n^4$$

$$\sigma(n_{\rm Ps} = 20) \sim 10^{-9} {\rm cm}^2$$

 \bar{H} state defined by Ps state \bar{H} velocity dominated by \bar{p}

NOVEMBER 25TH 2016

- IPHC SEMINAR, STRASBOURG-

ANTIHYDROGEN DETECTION IN AEGIS

- 3. Formation of an H beam by **Stark acceleration** with inhomogeneous electric fields
- 4. Measurement of <u>g</u> in a two-grating **moiré deflectometer** coupled to a position-sensitive detector.

- Rydberg atoms are sensitive to el. field gradients.
- Accelerate the H along z-axis to few 100m/s

000

POSITRONIUM FORMATION&EXCITATION

POSITRONIUM FORMATION & EXCITATION

S(%)=(Area laser OFF-Area laser ON)/Area laser OFF

NOVEMBER 25TH 2016

- IPHC SEMINAR, STRASBOURG-

NOVEMBER 25TH 2016

- IPHC SEMINAR, STRASBOURG-

NOVEMBER 25TH 2016

() () () () () () () () () () () ()

NOVEMBER 25TH 2016

NOVEMBER 25TH 2016

· · · ·

0

0

- IPHC SEMINAR, STRASBOURG-

DETECTOR TECHNOLOGIES

Need high vertex resolution High signal efficiency and background reduction

Silicon detectors (strip, pixel)

000

. • •

Emulsions

Hybrid detector needed: example conceptual design

NOVEMBER 25TH 2016

- IPHC SEMINAR, STRASBOURG-

PROOF OF PRINCIPLE

NOVEMBER 25TH 2016

- IPHC SEMINAR, STRASBOURG-

TOWARDS PRODUCTION OF COLD P

- Cool the environment to sub-Kelvin level
- Sympathetic radiation electron cooling.
- Evaporative / adiabatic cooling
- Resistive cooling

000

 Sympathetic laser cooling with anions : La- program in Heidelberg
C₂- program at CERN
P. Yzombard et al.,

E. Jordan et al., Phys. Rev. Lett. **115** 113001 (2015)

P. Yzombard et al., Phys. Rev. Lett. 114 213001 (2015)

- IPHC SEMINAR, STRASBOURG-

SOME OTHER NEW RESULTS FROM THE AD

- "Cold" antihydrogen produced daily Reaching high production rate for precision measurements Nature Communications 4, 1785 (2013)
- Long trapping times achieved
 - "Crude" limits : proof of principle
- Towards precision measurements

Nature 529, 373-376 (2016)

0

0000

- red circles=data - green dots: simulation for $\bar{g}/g=100$

Nature Communications 4, 1785 (2013)

- IPHC SEMINAR, STRASBOURG-

CHLOÉ MALBRUNOT

Nature **483**, 439 (2012)

GS-HFS

~100 MHz precision

No microwaves (100 runs)

NOVEMBER 25TH 2016

SUMMARY

First proof-of-principle measurements in traps \checkmark First "beam" of \overline{H} observed in field-free region HFS measurement of H beam ~5 ppb achieved

000

0

- Colder H needed for "precise" trap and gravity experiments
 - development of \overline{H} laser cooling
 - sympathetic cooling of \bar{p} and e+
- \Box Higher yield of G-S \overline{H} for beam experiments
 - polarization, velocity measurement

Time scale for precision exp. : 5-10 years

<== STAY TUNED ==>

- IPHC SEMINAR, STRASBOURG-