# Assessing lepton-flavour non-universality with $B \rightarrow K^{*} \mu^{+} \mu^{-}$ 

Joaquim Matias<br>Universitat Autònoma de Barcelona

In collaboration with: B. Capdevila, S. Descotes-Genon, L. Hofer and J. Virto Based on: CDVM'16 and CDHM'16.

This talk will focus on the following questions:

- Setting the stage.
- A new generation of ULFV observables:
$1 Q_{i}$ (and $\hat{Q}_{i}$ observables)
$2 B_{j}$ (an $\widetilde{B}_{j}$ observables) with $\mathrm{j}=5,6 \mathrm{~s}$.
$3 \widetilde{M}$ a transversity independent charm free observable at low-q ${ }^{2}$ even with $\delta C_{9}^{N P} \neq 0$.
- Definitions, properties and ability to disentangle NP scenarios.


## Present situation


$P_{5}^{\prime}$ was proposed in DMRV, JHEP 1301(2013)048

$$
P_{5}^{\prime}=\sqrt{2} \frac{\operatorname{Re}\left(A_{0}^{L} A_{\perp}^{L *}-A_{0}^{R} A_{\perp}^{R *}\right)}{\sqrt{\left|A_{0}\right|^{2}\left(\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}\right)}}=\sqrt{2} \frac{\operatorname{Re}\left[n_{0} n_{\perp}^{\dagger}\right]}{\sqrt{\left|n_{0}\right|^{2}\left(\left|n_{\perp}\right|^{2}+\left|n_{\|}\right|^{2}\right)}}
$$

- 2013: $1 \mathrm{fb}^{-1}$ dataset LHCb found $3.7 \sigma$
- 2015: $3 \mathrm{fb}^{-1}$ dataset LHCb found $3 \sigma$ in 2 bins.
- Belle confirmed it in a bin $[4,8]$ few months ago.

1 Computed in i-QCDF + KMPW + 4-types of correct. $\mathrm{F}^{\text {full }}\left(\mathbf{q}^{2}\right)=F^{\text {soft }}\left(\xi_{\perp}, \xi_{\|}\right)+\triangle F^{\alpha_{s}}\left(q^{2}\right)+\triangle F^{\text {p.c. }}\left(q^{2}\right)$

| type of correction | Factorizable | Non-Factorizable |
| :---: | :---: | :---: |
| $\alpha_{s}$-QCDF | $\triangle F^{\alpha_{s}}\left(q^{2}\right)$ |  |
| power-corrections | $\triangle F^{\text {p.c. }}\left(q^{2}\right)$ | LCSR with single soft gluon contribution |

2 Another group [BSZ] found using full-FF approach and BSZ-FF very similar result ( $\lesssim$ errors).

## Other tensions beyond $P_{5}^{\prime} \ldots$

Systematic low-recoil small tensions:

| $b \rightarrow s \mu^{+} \mu^{-}$(low-recoil) | bin | SM | EXP | Pull |
| :--- | :---: | :---: | :---: | :---: |
| $10^{7} \times \mathrm{BR}\left(B^{0} \rightarrow K^{0} \mu^{+} \mu^{-}\right)$ | $[15,19]$ | $0.91 \pm 0.12$ | $0.67 \pm 0.12$ | +1.4 |
| $10^{7} \times \mathrm{BR}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)$ | $[16,19]$ | $1.66 \pm 0.15$ | $1.23 \pm 0.20$ | +1.7 |
| $10^{7} \times \mathrm{BR}\left(B^{+} \rightarrow K^{*+} \mu^{+} \mu^{-}\right)$ | $[15,19]$ | $2.59 \pm 0.25$ | $1.60 \pm 0.32$ | $\mathbf{+ 2 . 5}$ |
| $10^{7} \times \mathrm{BR}\left(B_{s} \rightarrow \phi \mu^{+} \mu^{-}\right)$ | $[15,18.8]$ | $2.20 \pm 0.17$ | $1.62 \pm 0.20$ | $\mathbf{+ 2 . 2}$ |

After including the BSZ DA correction that affected the error of twist-4:

| $10^{7} \times \mathrm{BR}\left(B_{s} \rightarrow \phi \mu^{+} \mu^{-}\right)$ | SM | EXP | Pull |
| :--- | :---: | :---: | :---: |
| $[0.1,2]$ | $1.56 \pm 0.35$ | $1.11 \pm 0.16$ | +1.1 |
| $[2,5]$ | $1.55 \pm 0.33$ | $0.77 \pm 0.14$ | $\mathbf{+ 2 . 2}$ |
| $[5,8]$ | $1.89 \pm 0.40$ | $0.96 \pm 0.15$ | $\mathbf{+ 2 . 2}$ |

## Global fit to $\sim 90$ obs. (radiative $+b \rightarrow \boldsymbol{s} \mu^{+} \mu^{-}$)

All deviations add up constructively

- A new physics contribution to $C_{9, \mu}=-1.1$ with a pull-SM of $4.5 \sigma$ alleviates all anomalies and tensions.
- $3.8 \sigma$ if only $b \rightarrow s \mu^{+} \mu^{-}$ excluding $[6,8]$
- $2.8 \sigma$ if only low-recoil considered.
- NP contributions to the rest of Wilson coefficient are not (for the moment) yet significantly different from zero.

No $b \rightarrow s e^{+} e^{-}$data included at this point.

## NATURE shows us two very different faces.....

## The strongest signal of NP in $\mathrm{C}_{9}$

- This coefficient is affected by long-distance charm contributions.

$$
\begin{aligned}
C_{9}^{\mathrm{efff}, i} & =C_{9}^{\mathrm{eff} \mathrm{fM}} \text { pert }\left(q^{2}\right)+C_{9}^{\mathrm{NP}} \\
& +C_{9}^{\text {I.d.c c } \bar{c}(i)}\left(q^{2}\right)
\end{aligned}
$$

## Hints of lepton-flavour non-universal NP

■ Observables probing ULFV are free from long-distance charm pollution in the SM, i.e., free from $C_{9}^{l . d . c \bar{c}(i)}\left(q^{2}\right)$.
■ Only NP can explain tensions w.r.t SM in these observables.


## A brief (or not so) parenthesis on hadronic uncertainties

There are two ways to discard attempts of explanation (factorizable p.c, charm) of the anomaly in $P_{5}^{\prime}$ within the SM:
1 Direct deconstruction of arguments ( $\rightarrow$ the case of factorizable power corrections) or by comparison with data of explicit computations (not fits) of long-distance charm contributions (KMPW).

2 With the help of ULFV observables: if $P_{5}^{\prime}$ and ULFV observables share the same new physics explanation, no space for long-distance charm or other unknown hadronic uncertainties is left in $P_{5}^{\prime}$.
let's play a bit first with 1 ....


## Factorizable power corrections

$$
F^{\text {full }}\left(q^{2}\right)=F^{\text {soft }}\left(\xi_{\perp}, \xi_{\|}\right)+\triangle F^{\alpha_{s}}\left(q^{2}\right)+\triangle F^{\text {p.c. }}\left(q^{2}\right) \text { with } \quad \triangle F^{\text {p.c. }}\left(q^{2}\right)=a_{F}+b_{F}\left(\frac{q^{2}}{m_{B}^{2}}\right)+\ldots
$$

1) Power correction error size: In JC'14 (and DHMV'14) they take uncorrelated errors among p.c. missing that this choice introduces scheme (definition of SFF) dependence. Numerically:

| ONLY power correction error of $\left\langle P_{5}^{\prime}\right\rangle_{[4,6]}$ | error of f.f.+p.c. scheme-1 <br> in transversity basis DHMV'14 | error of f.f.+p.c. scheme-2 <br> in helicity basis JC'14 |
| :--- | ---: | ---: |
| NO correlations among errors of p.c. (hyp. 10\%) | $\pm 0.05$ | $\pm 0.15$ |
| WITH correlations among errors of p.c. | $\pm 0.03$ | $\pm 0.03$ |

Their scheme's choice inflates error artificially.

## Analytically:

## Factorizable power corrections

$$
F^{\text {full }}\left(q^{2}\right)=F^{\text {soft }}\left(\xi_{\perp}, \xi_{\|}\right)+\triangle F^{\alpha_{s}}\left(q^{2}\right)+\triangle F^{\text {p.c. }}\left(q^{2}\right) \text { with } \quad \triangle F^{\text {p.c. }}\left(q^{2}\right)=a_{F}+b_{F}\left(\frac{q^{2}}{m_{B}^{2}}\right)+\ldots
$$

1) Power correction error size: In JC'14 (and DHMV'14) they take uncorrelated errors among p.c. missing that this choice introduces scheme (definition of SFF) dependence. Numerically:

| ONLY power correction error of $\left\langle P_{5}^{\prime}\right\rangle_{[4,6]}$ | error of f.f.+p.c. scheme-1 <br> in transversity basis DHMV'14 | error of f.f.+p.c. scheme-2 <br> in helicity basis JC'14 |
| :--- | ---: | ---: |
| NO correlations among errors of p.c. (hyp. 10\%) | $\pm 0.05$ | $\pm 0.15$ |
| WITH correlations among errors of p.c. | $\pm 0.03$ | $\pm 0.03$ |

Their scheme's choice inflates error artificially.
Analytically:

$$
\begin{aligned}
P_{5}^{\prime}=\left.P_{5}^{\prime}\right|_{\infty}[1 & +\frac{a V_{-}-a T_{-}}{\xi_{\perp}} \frac{m_{B}}{|k|} \frac{m_{B}^{2}}{q^{2}} C_{7}^{\text {eff }} \frac{C_{9, \perp} C_{9, \|}-C_{10}^{2}}{\left(C_{9, \perp}^{2}+C_{10}^{2}\right)\left(C_{9, \perp}+C_{9, \|}\right)}-\frac{a V_{+}}{\xi_{\perp}} \frac{2 C_{9, \|}}{C_{9, \perp}+C_{9, \|}} \\
& \left.+\frac{a V_{0}-a T_{0}}{\xi_{\|}} 2 C_{7}^{\text {eff }} \frac{C_{9, \perp} C_{9, \|}-C_{10}^{2}}{\left(C_{9, \|}^{2}+C_{10}^{2}\right)\left(C_{9, \perp}+C_{9, \|}\right)}+\mathcal{O}\left(\frac{m_{K *}^{2}}{m_{B}^{2}}, \frac{q^{2}}{m_{B}^{2}}\right)\right]
\end{aligned}
$$

## Factorizable power corrections

$$
F^{\text {full }}\left(q^{2}\right)=F^{\text {soft }}\left(\xi_{\perp}, \xi_{\|}\right)+\triangle F^{\alpha_{s}}\left(q^{2}\right)+\triangle F^{\text {p.c. }}\left(q^{2}\right) \text { with } \quad \triangle F^{\text {p.c. }}\left(q^{2}\right)=a_{F}+b_{F}\left(\frac{q^{2}}{m_{B}^{2}}\right)+\ldots
$$

1) Power correction error size: In JC'14 (and DHMV'14) they take uncorrelated errors among p.c. missing that this choice introduces scheme (definition of SFF) dependence. Numerically:

| ONLY power correction error of $\left\langle P_{5}^{\prime}\right\rangle_{[4,6]}$ | error of f.f.+p.c. scheme-1 <br> in transversity basis DHMV'14 | error of f.f.+p.c. scheme-2 <br> in helicity basis JC'14 |
| :--- | ---: | ---: |
| NO correlations among errors of p.c. (hyp. 10\%) | $\pm 0.05$ | $\pm 0.15$ |
| WITH correlations among errors of p.c. | $\pm 0.03$ | $\pm 0.03$ |

Their scheme's choice inflates error artificially.
Analytically:

$$
\begin{aligned}
P_{5}^{\prime}=\left.P_{5}^{\prime}\right|_{\infty}[1 & +\frac{a V_{-}-\mathrm{a} T_{-}}{\xi_{\perp}} \frac{m_{B}}{|k|} \frac{m_{B}^{2}}{q^{2}} C_{7}^{\mathrm{eff}} \frac{C_{9, \perp} C_{9, \|}-C_{10}^{2}}{\left(C_{9, \perp}^{2}+C_{10}^{2}\right)\left(C_{9, \perp}+C_{9, \|}\right)}-\frac{\mathrm{aV}_{+}}{\xi_{\perp}} \frac{2 \mathrm{C}_{9, \|}}{\mathrm{C}_{9, \perp}+\mathrm{C}_{9, \|}} \\
& \left.+\frac{a V_{0}-a T_{0}}{\xi_{\|}} 2 C_{7}^{\mathrm{eff}} \frac{C_{9, \perp} C_{9, \|}-C_{10}^{2}}{\left(C_{9, \|}^{2}+C_{10}^{2}\right)\left(C_{9, \perp}+C_{9, \|}\right)}+\mathcal{O}\left(\frac{m_{K^{*}}^{2}}{m_{B}^{2}}, \frac{q^{2}}{m_{B}^{2}}\right)\right]
\end{aligned}
$$

- JC'14 missed the most relevant term $\mathrm{aV}_{+}$that in transversity basis makes manifest scheme-dependence.
- JC'14 enters in conflict not only with DHMV but also with BSZ that uses full-FF method.

In the flavour community this is not anymore considered an issue (except Tobias..).

$$
F^{\text {full }}\left(q^{2}\right)=F^{\text {soft }}\left(\xi_{\perp}, \xi_{\|}\right)+\triangle F^{\alpha_{s}}\left(q^{2}\right)+\triangle F^{\text {p.c. }}\left(q^{2}\right) \text { with } \quad \triangle F^{\text {p.c. }}\left(q^{2}\right)=a_{F}+b_{F}\left(\frac{q^{2}}{m_{B}^{2}}\right)+\ldots
$$

1) Power correction error size: In JC'14 (and DHMV'14) they take uncorrelated errors among p.c. missing that this choice introduces scheme (definition of SFF) dependence. Numerically:

| ONLY power correction error of $\left\langle P_{5}^{\prime}\right\rangle_{[4,6]}$ | error of f.f.+p.c. scheme-1 <br> in transversity basis DHMV'14 | error of f.f.+p.c. scheme-2 <br> in helicity basis JC'14 |
| :--- | ---: | ---: |
| NO correlations among errors of p.c. (hyp. 10\%) | $\pm 0.05$ | $\pm 0.15$ |
| WITH correlations among errors of p.c. | $\pm 0.03$ | $\pm 0.03$ |

Their scheme's choice inflates error artificially.
Analytically:

$$
\begin{aligned}
P_{5}^{\prime}=\left.P_{5}^{\prime}\right|_{\infty}[1 & +\frac{a V_{-}-\mathrm{a} T_{-}}{\xi_{\perp}} \frac{m_{B}}{|k|} \frac{m_{B}^{2}}{q^{2}} C_{7}^{\mathrm{eff}} \frac{C_{9, \perp} C_{9, \|}-C_{10}^{2}}{\left(C_{9, \perp}^{2}+C_{10}^{2}\right)\left(C_{9, \perp}+C_{9, \|}\right)}-\frac{\mathrm{aV}}{\xi_{+}} \frac{2 \mathrm{C}_{9, \|}}{\mathrm{C}_{9, \perp}+\mathrm{C}_{9, \|}} \\
& \left.+\frac{a V_{0}-a T_{0}}{\xi_{\|}} 2 C_{7}^{\mathrm{eff}} \frac{C_{9, \perp} C_{9, \|}-C_{10}^{2}}{\left(C_{9, \|}^{2}+C_{10}^{2}\right)\left(C_{9, \perp}+C_{9, \|}\right)}+\mathcal{O}\left(\frac{m_{K^{*}}^{2}}{m_{B}^{2}}, \frac{q^{2}}{m_{B}^{2}}\right)\right]
\end{aligned}
$$

- JC'14 missed the most relevant term $\mathrm{aV}_{+}$that in transversity basis makes manifest scheme-dependence.
- JC'14 enters in conflict not only with DHMV but also with BSZ that uses full-FF method.

In the flavour community this is not anymore considered an issue (except Tobias..).

Long-distance contributions from $c \bar{c}$ loops where the lepton pair is created by an electromagnetic current.

1 The $\gamma$ couples universally to $\mu^{ \pm}$and $e^{ \pm}$: $R_{K}$ nor any LFVU cannot be explained by charm-loops.
2 KMPW is the only real computation of long-distance charm.

$$
C_{9}^{\text {effi }}=C_{9 \text { SM pert }}^{\text {eff }}\left(q^{2}\right)+C_{9}^{\mathrm{NP}}+s_{i} \delta C_{9}^{\text {c̄̄(i) }}{ }_{\text {KMPW }}\left(q^{2}\right)
$$

KMPW implies $s_{i}=1$, but we vary $s_{i}=0 \pm 1, i=0, \perp, \|$.

$$
\begin{aligned}
\delta C_{9}^{\mathrm{LD},(\perp, \|)}\left(q^{2}\right) & =\frac{a^{(\perp, \|)}+b^{(\perp, \|)} q^{2}\left[c^{(\perp, \|)}-q^{2}\right]}{b^{(\perp, \|)} q^{2}\left[c^{(\perp, \|)}-q^{2}\right]} \\
\delta C_{9}^{\mathrm{LD}, 0}\left(q^{2}\right) & =\frac{a^{0}+b^{0}\left[q^{2}+s_{0}\right]\left[c^{0}-q^{2}\right]}{b^{0}\left[q^{2}+s_{0}\right]\left[c^{0}-q^{2}\right]}
\end{aligned}
$$




3 Bin-by-bin global fit analysis of $C_{9}$ tells you if a residual $q^{2}$ dependence is present.
$\Rightarrow$ if the values obtained are flat, charm is well estimated.


- We use KMPW. Notice the excellent agreement of bins [2,5], [4,6], [5,8].

$$
C_{9}^{N P[2,5]}=-1.6 \pm 0.7, C_{9}^{N P[4,6]}=-1.3 \pm 0.4, C_{9}^{N P[5,8]}=-1.3 \pm 0.3
$$

- We do not find any indication for a $q^{2}$-dependence in $C_{9}$ neither in the plots nor in a 6D fit adding $a^{i}+b^{i} s$ to $C_{9}^{\text {eff }}$ for $i=K^{*}, K, \phi$.
$\rightarrow$ disfavours again charm explanation.
Another group [Silvestrini et al.] argue that maybe there is an unknown and very hard to compute charm contribution (that they do not even try to compute or estimate) that explain only one anomaly.


## An anatomy/deconstruction of (Ciuchini et al' 15)

There is certain confusion in the literature related to the correct interpretation of [Ciuchini et al.'15].

1) Arbitrary parametrization $h_{\lambda}=h_{\lambda}^{(0)}+h_{\lambda}^{(1)} q^{2}+h_{\lambda}^{(2)} q^{4}$ and fit ONLY LHCb data @low- $q^{2}$.


THIS IS JUST A FIT TO DATA: No dynamics is involved. If one adds 18 free parameters one can fit easily anything.

Can one get a solid conclusion out of this result?

In v 1 of that work we found an internal inconsistency of more than $4 \sigma$ between their predictions.
$\rightarrow$ Reason error in $S_{4}^{\text {theory }}$. Example in bin [4,6]:

$$
S_{4}^{\nu 1}=-0.120 \pm 0.008 \text { versus } S_{4}^{{ }^{2}}=-0.241 \pm 0.014 \text { they differ by } 7.5 \sigma!!!!!
$$

Surprisingly in abstract v1: " good description of current experimental data within SM" (also in v2...)
$\rightarrow$ Difficult to get a robust conclusion. So many parameters can swallow anything (real or spurious).

## More on (Ciuchini et al.' 15)... an anatomy

The paper has basically two parts:
I) Part-I Unconstrained fit: They simply confirm our results of the global fit (we obviously agree).

Consider again:


$$
C_{9}^{\mathrm{effi}}=C_{9}^{\mathrm{eff}}{ }_{\text {SM pert }}\left(q^{2}\right)+C_{9}^{\mathrm{NP}}+\delta C_{9}^{\mathrm{cc}(i)}{ }_{\mathrm{KMPW}}\left(q^{2}\right)
$$

where

$$
\delta{C_{9}^{\mathrm{cc}(i)}{ }_{\text {KMPW }}\left(q^{2}\right) \rightarrow\left|2 C_{1} \tilde{g}_{i}^{\text {CFFMPSV }}\right| \rightarrow h_{\lambda} .}
$$

Blue: Their fit to $\delta \mathcal{C}_{9}^{\mathrm{c}(\bar{c}(i)}{ }_{\text {KMPW }}\left(q^{2}\right)$ Green: The computation of Khodjamirian et al.

They show a constant shift everywhere. Two options:
...this universal shift is $C_{9}^{N P}$ (same as $R_{K}$ ).
...or a universal charm $\mathrm{q}^{2}$-independent coming from?? unable to explain nor $R_{K}$ neither any LFVU. (weird)

## More on (Ciuchini et al.' 15)... an anatomy

II) Part-II Constrained fit: This part of the paper is highly 'controversial'.

They consider the result of KMPW at $q^{2} \lesssim 1 \mathrm{GeV}^{2}$

 as an estimate of the charm loop effect.

- Problem 1: They tilt the fit at very-low $q^{2}$ inducing artificially a high- $q^{2}$ effect.
- Problem 2: Precisely below $1 \mathrm{GeV}^{2}$ there are well known lepton mass effects not considered here.
- Problem 3: KMPW computed the soft gluon effect with respect to LO factorizable (no imaginary part included) but CFFMPSV imposes

$$
\left|g_{i}\right|^{L H C b} \simeq g_{i}^{K M P W} \quad \text { at } \quad q^{2} \lesssim 1 \mathrm{GeV}^{2}
$$

This makes no sense since on the RHS the imaginary part is not computed.

KMPW (left): Dashed is $2 C_{1} \tilde{g}_{1}$ indistinguishable from $2 C_{1} \tilde{g}_{2}$.

# Universal Lepton-Flavour Violating 

Observables

## Universal LFV observables: $R_{K}$ 's hints

$$
R_{K}=\frac{\operatorname{Br}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)}{\operatorname{Br}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)}=0.745_{-0.074}^{+0.090} \pm 0.036
$$

$\Rightarrow R_{K}$ shows a $2.6 \sigma$ tension with its SM prediction.
$\Rightarrow R_{K}$ (but also future measurements of $R_{K^{*}}, R_{\phi}, \ldots$ ) represents the next step:

- New ingredient of the puzzle: Is Nature Universal LFV?
- This tension cannot be resolved within the SM, in particular long-distance charm cannot explain it.

If answer is YES:

## NP or Charm?

(obsolete question)
(disentangling type of NP)

New Physics only possible explanation and charm only enters into game when discussing type of New Physics


The gray box is the SM prediction and blue cross is data.

## Universal LFV observables: $R_{K}$ 's hints

$$
R_{K}=\frac{\operatorname{Br}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)}{\operatorname{Br}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)}=0.745_{-0.074}^{+0.090} \pm 0.036
$$

$\Rightarrow R_{K}$ shows a $2.6 \sigma$ tension with its SM prediction.
$\Rightarrow R_{K}$ (but also future measurements of $R_{K^{*}}, R_{\phi}, \ldots$ ) represents the next step:

- New ingredient of the puzzle: Is Nature Universal LFV?
- This tension cannot be resolved within the SM, in particular long-distance charm cannot explain it.
1 A separated fit to $C_{9, \mu}^{\mathrm{NP}}$ and $C_{9, e}^{\mathrm{NP}}$ shows a preference for $C_{9, \mu}^{\mathrm{NP}} \sim-1$ and $C_{9, e}^{\mathrm{NP}}$ compatible with zero.

$$
\left(C_{9, \mu}^{N P}, C_{9, e}^{N P}\right)
$$



## Universal LFV observables: $R_{K}$ 's hints

$$
R_{K}=\frac{\operatorname{Br}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)}{\operatorname{Br}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)}=0.745_{-0.074}^{+0.090} \pm 0.036
$$

$\Rightarrow R_{K}$ shows a $2.6 \sigma$ tension with its SM prediction.
$\Rightarrow R_{K}$ (but also future measurements of $R_{K^{*}}, R_{\phi}, \ldots$ ) represents the next step:

- New ingredient of the puzzle: Is Nature Universal LFV?
- This tension cannot be resolved within the SM, in particular long-distance charm cannot explain it.
$2 R_{K}$ tension is coherent with the pattern of tensions observed in the $B \rightarrow K^{*}$ angular analysis.
3 Same $C_{9, \mu}^{\mathrm{NP}}=-1.1$ alleviates both $R_{K}$ and $P_{5}^{\prime}$ anomalies (with $C_{9, e}$ SM-like). $R_{K}$ adds coherently in the global fit $+0.4 \sigma$ to this NP solution.



$$
R_{K}=\frac{\operatorname{Br}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)}{\operatorname{Br}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)}=0.745_{-0.074}^{+0.090} \pm 0.036
$$

$\Rightarrow R_{K}$ shows a $2.6 \sigma$ tension with its SM prediction.
$\Rightarrow R_{K}$ (but also future measurements of $R_{K^{*}}, R_{\phi}, \ldots$ ) represents the next step:

- New ingredient of the puzzle: Is Nature Universal LFV?
- This tension cannot be resolved within the SM, in particular long-distance charm cannot explain it.

$2 R_{K}$ tension is coherent with the pattern of tensions observed in the $B \rightarrow K^{*}$ angular analysis.
3 Same $C_{9, \mu}^{\mathrm{NP}}=-1.1$ alleviates both $R_{K}$ and $P_{5}^{\prime}$ anomalies (with $C_{9, e} \mathrm{SM}$-like). $R_{K}$ adds coherently in the global fit $+0.4 \sigma$ to this NP solution.

| $b \rightarrow S \mu^{+} \mu^{-}$ | bin | $S M \rightarrow N P$ |
| :--- | :---: | :---: |
| $\operatorname{BR}\left(B^{0} \rightarrow K^{0} \mu^{+} \mu^{-}\right)$ | $[15,19]$ | $+1.4 \sigma \rightarrow+0.3 \sigma$ |
| $\operatorname{BR}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)$ | $[16,19]$ | $+1.7 \sigma \rightarrow+0.4 \sigma$ |
| $\operatorname{BR}\left(B^{+} \rightarrow K^{*+} \mu^{+} \mu^{-}\right)$ | $[15,19]$ | $+2.5 \sigma \rightarrow+1.2 \sigma$ |
| $\operatorname{BR}\left(B_{s} \rightarrow \phi \mu^{+} \mu^{-}\right)$ | $[15,18.8]$ | $+2.2 \sigma \rightarrow+0.5 \sigma$ |

## Is it enough $R_{K}$ to disentangle different New Physics scenarios?

But, with current data, more information than $R_{K}$ alone is needed to distinguish between NP scenarios. E.g. $C_{9, \mu}^{\mathrm{NP}}=-1.1$ (scenario 1) vs $C_{9, \mu}^{\mathrm{NP}}=-C_{10, \mu}^{\mathrm{NP}}=-0.65$ (scenario 2).


Blue cross is data and gray band is SM prediction

## THE (near) FUTURE:

A new generation of ULFV charm-insensitive observables (in SM).
$\Rightarrow$ Assume Nature violates universal lepton flavour (muons vs electrons).
Goal: To probe the different NP scenarios suggested by global fits with the highest possible precision.
How? New observables matching the following criteria:

- Sensitivity only to the short distance part of $C_{9}$ (charm free in the SM).
- Capacity to test for lepton flavour universality violation between the electronic and muonic modes.
- Sensitivity to Wilson coefficients other than $C_{9}$.
- In presence of New Physics reduced hadronic uncertainties.

Exploiting the angular analyses of both $B \rightarrow K^{*} \mu \mu$ and $B \rightarrow K^{*} e e$ decays, certain combinations of the angular observables fulfill the requirements

$$
\left\langle Q_{i}\right\rangle=\left\langle P_{i}^{\mu}\right\rangle-\left\langle P_{i}^{e}\right\rangle \quad\left\langle\hat{Q}_{i}\right\rangle=\left\langle\hat{P}_{i}^{\mu}\right\rangle-\left\langle\hat{P}_{i}^{e}\right\rangle \quad\left\langle B_{k}\right\rangle=\frac{\left\langle J_{k}^{\mu}\right\rangle}{\left\langle U_{k}^{e}\right\rangle}-1 \quad\left\langle\tilde{B}_{k}\right\rangle=\frac{\left\langle J_{k}^{\mu} / \beta_{\mu}^{2}\right\rangle}{\left\langle J_{k}^{e} / \beta_{e}^{2}\right\rangle}-1
$$

$i=1, \ldots, 9 \& k=5,6 s$
where^means correcting for lepton-mass effects in the first bin (backup slides).

## How LFUV NP enter in Wilson coefficients?:

$$
\begin{aligned}
C_{i, \mu} & =\left\{\begin{array}{l}
C_{i}+\delta C_{i}, i=10,9^{\prime}, 10^{\prime} \\
C_{9}+\delta C_{9}+\triangle C_{9}^{(j)}
\end{array} \quad C_{i, e}=\left\{\begin{array}{l}
C_{i}, i=10,9^{\prime}, 10^{\prime} \\
C_{9}+\triangle C_{9}^{(j)}
\end{array}\right.\right. \\
j & =\perp, \|, 0
\end{aligned}
$$

Notice $C_{7,7^{\prime}}$ is obviously lepton-mass independent.
$\Rightarrow \delta C_{i}=C_{i, \mu}-C_{i, e} \equiv$ amount of LFU violation.
$\Rightarrow C_{i} \equiv \mathrm{SM}+\mathrm{LFU} \mathrm{NP}$.
$\Rightarrow \triangle C_{9}^{(j)} \equiv$ long-distance charm.Two types:
■ Transversity Dependent: $\triangle C_{9}^{\perp, \|, 0}$ different.
■ Transversity Independent: $\triangle C_{9}^{\perp}=\triangle C_{9}^{\|}=\triangle C_{9}^{0}$.

## $Q_{i}$ observables. The example: $P_{5}^{\prime}$ versus $Q_{5}=P_{5}^{\prime \mu}-P_{5}^{\prime e}$

Gray-SM, Red-NP $C_{9, \mu}^{\mathrm{NP}}=-1.11, C_{9, e}^{\mathrm{NP}}=0$ and data


- Soft FF independent at LO exactly in SM Soft FF independent at LO exactly in NP.
- Large sensitivity to $C_{9, \mu}$. SM (DHMV'15):

$$
\begin{aligned}
\left\langle P_{5}^{\prime}\right\rangle_{[4,6]} & =-0.82 \pm 0.08 \\
\left\langle P_{5}^{\prime}\right\rangle_{[6,8]} & =-0.94 \pm 0.08
\end{aligned}
$$



- FF independent at all orders in SM (up to $\triangle m_{\ell}^{2}$ ). Soft FF independent at LO exactly in NP.
- Long-distance charm insensitive in the SM. Large sensitivity to $\delta C_{9}=C_{9, \mu}-C_{9, e}$. (CDMV'16): (<10 ${ }^{-3}$ without lepton mass)

$$
\begin{aligned}
& \left\langle\hat{Q}_{5}\right\rangle_{[4,6]}=-0.002 \pm 0.017 \\
& \left\langle\hat{Q}_{5}\right\rangle_{[6,8]}=+0.002 \pm 0.010
\end{aligned}
$$

$Q_{i}$ observables. The example: $P_{5}^{\prime}$ versus $Q_{5}=P_{5}^{\prime \mu}-P_{5}^{\prime e}$ for $C_{9, \mu}^{N P}=-1.1$



Remark: In presence of NP hadronic uncertainties reemerge in $Q_{5}\left(\& \hat{Q}_{5}\right) \ldots$

| $P_{5}^{\prime}$ | Prediction $C_{9, \mu}^{\mathrm{NP}}=-1.1$ | $Q_{5}$ | Prediction $\delta C_{9}=-1.1$ | $\hat{Q}_{5}$ | Prediction $\delta C_{9}=-1.1$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $[0.1,0.98]$ | $0.80 \pm 0.14$ | $[0.1,0.98]$ | $0.172 \pm 0.016$ | $[0.1,0.98]$ | $-0.000 \pm 0.018$ |
| $[1.1,2.5]$ | $0.43 \pm 0.12$ | $[1.1,2.5]$ | $0.241 \pm 0.025$ | $[1.1,2.5]$ | $0.227 \pm 0.023$ |
| $[2.5,4]$ | $-0.12 \pm 0.13$ | $[2.5,4]$ | $0.370 \pm 0.022$ | $[2.5,4]$ | $0.370 \pm 0.021$ |
| $[4,6]$ | $-0.50 \pm 0.11$ | $[4,6]$ | $0.312 \pm 0.047$ | $[4,6]$ | $0.314 \pm 0.046$ |
| $[6,8]$ | $-0.73 \pm 0.12$ | $[6,8]$ | $0.212 \pm 0.063$ | $[6,8]$ | $0.216 \pm 0.061$ |

BUT, it only matters when discussing the type of NP we can see.

SM predictions (grey boxes),

$$
\mathrm{NP}: C_{9, \mu}^{\mathrm{NP}}=-1.11 \& C_{9, \mu}^{\mathrm{NP}}=-C_{10, \mu}^{\mathrm{NP}}=-0.65 \& C_{9, \mu}^{\mathrm{NP}}=-C_{9, \mu}^{\mathrm{NP}}=-1.18 \& C_{10, \mu}^{\mathrm{NP}}=C_{10, \mu}^{\mathrm{NP}}=0.38
$$

with $\delta C_{i}=C_{i, \mu}-C_{i, e}\left(\right.$ and $\left.C_{i, e} \mathrm{SM}\right)$

$\Rightarrow Q_{1,4}$ provide excellent opportunities to probe RHC in $C_{9, \mu}^{\prime} \& C_{10, \mu}^{\prime}$.

- $Q_{1}$ shows significant deviations in presence of RHC. If $C_{7}^{\prime}=0$ at LO

$$
s_{0}^{L O}=-2 \frac{C_{7} \delta C_{9}^{\prime} m_{b} M_{B}}{C_{10, \mu} \delta C_{10}^{\prime}+C_{9, \mu} \delta C_{9}^{\prime}}
$$

no zero (except $s=0$ ) if $\delta C_{9}^{\prime}=0$. no sensitivity to $C_{i}$ if $C_{i}^{\prime}=0$.

- $Q_{4}$ at low- $q^{2}$ exhibits deviations for $C_{9,10, \mu}^{\prime}$ when accurate precision in measurements is achieved.


## Probing NP in $C_{9,10}$ with $Q_{i}$

SM predictions (grey boxes),
NP: $C_{9, \mu}^{\mathrm{NP}}=-1.11$ (scenario1) \& $C_{9, \mu}^{\mathrm{NP}}=-C_{10, \mu}^{\mathrm{NP}}=-0.65$ (scenario 2) with $\delta C_{i}=C_{i, \mu}-C_{i, e}$ (and $C_{i, e} \mathrm{SM}$ )

$\Rightarrow Q_{2}, Q_{4} \& Q_{5}$ show distinctive signatures for the two NP scenarios considered.
■ Differences in the high- $q^{2}$ bins of the large recoil region of $Q_{2} \& Q_{5}$ are quite significant. Lack of difference between scenario 2 and SM same reason why $P_{5}^{\prime}$ in scenario 2 is worst than scenario 1.

- $Q_{4}$ at very low- $q^{2}$ (second bin) is very promising to disentangle scenario 1 from 2.

Idea: Combine $J_{i}^{\mu} \& J_{i}^{e}$ to build combinations sensitive to some $C_{i}$, with controlled sensitivitiy to long-distance charm.

$$
\begin{aligned}
& \beta_{\ell} J_{5}-2 i J_{8}=8 \beta_{\ell}^{2} N^{2} m_{B}^{2}(1-\hat{s})^{3} \frac{\hat{m}_{K^{*}}}{\hat{s} \sqrt{\hat{s}}} C_{10}^{\ell}\left[C_{7} \hat{m}_{b}(1+\hat{s})+\hat{\mathbf{s}} C_{9}^{\ell}\right] \xi_{\perp} \xi_{\|}+\ldots \\
& \beta_{\ell} J_{6 s}-2 i J_{9}=16 \beta_{\ell}^{2} N^{2} m_{B}^{2} \frac{(1-\hat{s})^{2}}{\hat{s}} C_{10}^{\ell}\left[2 C_{7} \hat{m}_{b}+\hat{\mathbf{s}} C_{9}^{\ell}\right] \xi_{\perp}^{2}+\ldots
\end{aligned}
$$

where $\beta_{\ell}=\sqrt{1-4 m_{\ell}^{2} / q^{2}}$.
Assuming real NP \& maximal LFUV $\mu$ vs $e$, natural combinations are

$$
B_{5}=\frac{J_{5}^{\mu}}{J_{5}^{e}}-1 \quad B_{6 s}=\frac{J_{6 s}^{\mu}}{J_{6 s}^{e}}-1
$$

- Form factor independent at all orders (up to $\triangle$ lepton mass).
- Full charm insensitive in the SM.
- Linear sensitivity to $\delta C_{9}$ kinematically suppressed.


## $B_{5} \& B_{6 s}$ Observables (unique properties)

In the large-recoil limit and in absence of RHC currents [CDMV'16]:

$$
\begin{aligned}
& B_{5}=\frac{J_{5}^{\mu}-J_{5}^{e}}{J_{5}^{e}}=\frac{\beta_{\mu}^{2}-\beta_{e}^{2}}{\beta_{e}^{2}}+\frac{\beta_{\mu}^{2}}{\beta_{e}^{2}} \frac{\delta C_{10}}{C_{10}}+\frac{\beta_{\mu}^{2}}{\beta_{e}^{2}} \frac{2\left(C_{10}+\delta C_{10}\right) \delta C_{9} \hat{\mathbf{s}}}{C_{10}\left(2 C_{7} \hat{m}_{b}(1+\hat{s})+\left(2 C_{9}+\triangle C_{9,0}+\triangle C_{9, \perp}\right) \hat{\mathbf{s}}\right)}+\ldots \\
& B_{6 s}=\frac{J_{6 s}^{\mu}-J_{6 s}^{e}}{J_{6 s}^{e}}=\frac{\beta_{\mu}^{2}-\beta_{e}^{2}}{\beta_{e}^{2}}+\frac{\beta_{\mu}^{2}}{\beta_{e}^{2}} \frac{\delta C_{10}}{C_{10}}+\frac{\beta_{\mu}^{2}}{\beta_{e}^{2}} \frac{2\left(C_{10}+\delta C_{10}\right) \delta C_{9} \hat{\mathbf{s}}}{C_{10}\left(4 C_{7} \hat{m}_{b}+\left(2 C_{9}+\triangle C_{9, \perp}+\triangle C_{9, \|}\right) \hat{\mathbf{s}}\right)}+\ldots
\end{aligned}
$$

In the limit of $s \rightarrow 0 \delta C_{10}$ is cleanly disentangled:

$$
B_{5}(s \rightarrow 0)=B_{6 s}(s \rightarrow 0)=\frac{\beta_{\mu}^{2}-\beta_{e}^{2}}{\beta_{e}^{2}}+\frac{\beta_{\mu}^{2}}{\beta_{e}^{2}} \frac{\delta C_{10}}{C_{10}}+\ldots
$$

This shows the IMPORTANCE of the normalization to the electronic mode. IF NOT normalized:
Several PROBLEMS in extracting $\delta C_{10}$ if not normalized:

$$
J_{5}^{\mu}-J_{5}^{e} \propto \mathbf{C}_{7} \delta C_{10} \xi_{\perp} \xi_{\|}
$$

1) $\xi_{\perp} \xi_{\|}$: SFF error? KMPW or BSZ
2) Charm contribution possible inside $\mathbf{C}_{7}$.

## $B_{5} \& B_{6 s} \rightarrow B_{5} \& B_{6 s}$ Observables

## $B_{5} \& B_{6 s}$ are not identically 0 in the SM.

Lepton mass differences generates a non-zero contribution mainly in the first bin.
$\Rightarrow$ If on an event-by-event basis experimentalist can measure $\left\langle\boldsymbol{J}_{i}^{\mu} / \beta_{\mu}^{2}\right\rangle$ :

$$
\left\langle\widetilde{B}_{5}\right\rangle=\frac{\left\langle J_{5}^{\mu} / \beta_{\mu}^{2}\right\rangle}{\left\langle J_{5}^{e} / \beta_{e}^{2}\right\rangle}-1\left\langle\widetilde{B}_{6 s}\right\rangle=\frac{\left\langle J_{65}^{\mu} / \beta_{\mu}^{2}\right\rangle}{\left\langle J_{6 s}^{e} / \beta_{e}^{2}\right\rangle}-1
$$

■ SM Predictions: $\left\langle\widetilde{B}_{i}\right\rangle=0.00 \pm 0.00$.

- All good properties of $B_{5,6 s}+$ simpler structure $\beta_{i} \rightarrow 1$.

$\widetilde{B}_{5}$

$\widetilde{B}_{6 s}$
$\square$ When $\hat{s} \rightarrow 0, \widetilde{B}_{5}=\widetilde{B}_{6 s}=\delta C_{10} / C_{10}$ $\Rightarrow$ Sensitivity to $\delta C_{10}$ !
Exactly as $B_{5}, B_{6 s}$ but simpler.
- 1st Bins: Capacity to distinguish $C_{9, \mu}^{\mathrm{NP}}=-1.11$ from $C_{9, \mu}^{\mathrm{NP}}=-C_{10, \mu}^{\mathrm{NP}}=-0.65$.


## M: Transversity Independent Charm Free Observables at low $q^{2}$

Goals: Can one construct a ULFV observable not only free from hadronic uncertainties in the SM but also free from long-distance charm in presence of New Physics? Yes BUT only under two conditions:

- Only if New Physics is dominated by $\delta C_{9}$.
- Only if long-distance charm is transversity independent $\triangle C_{9}^{\perp}=\triangle C_{9}^{\|}=\triangle C_{9}^{0}=\triangle C_{9}$.

$$
\widetilde{M}=\frac{\widetilde{B_{5}} \widetilde{B_{6 s}}}{\widetilde{B_{6 s}}-\widetilde{B_{5}}}=-\frac{\delta C_{9} \hat{s}}{C_{7} \hat{m}_{b}(1-\hat{s})}+\delta C_{10} \text { terms }+\delta C_{10} \triangle C_{9} \text { terms }+\ldots
$$

- If charm is transversity dependent (as expected) is impossible to remove it in presence of NP.

$$
\widetilde{M}=\frac{\widetilde{B_{5}} \widetilde{B_{6 s}}}{\widetilde{B_{6 s}}-\widetilde{B_{5}}}=-\frac{\delta C_{9} \hat{s}}{C_{7} \hat{m}_{b}(1-\hat{s})-\left(\triangle C_{9}^{0}-\triangle C_{9}^{\|}\right) \hat{s} / 2}+\ldots
$$

(Leading order expression)

- Maximal sensitivity to $N P$ at very low- $q^{2}$.

■ Even if for $\delta C_{10} \neq 0 \Rightarrow$ long-distance charm reemerges, this observable is particularly promising to measure $\delta C_{10}$.

- Singular in the region where $B_{5} \simeq B_{6 s}$.

Error size comes from TD charm suppressed at low- $q^{2}$


## Scenario 1:

$\delta C_{9 \mu}^{N P}=-1.11$

Error size comes from all type of charm TD and TI (due to $\delta C_{10} \neq 0$ )


## Scenario 2:

$\delta C_{9 \mu}^{N P}=-\delta C_{10 \mu}^{N P}=-0.65$

Figure: SM predictions (grey boxes) and NP predictions (red boxes) for ( $\tilde{M}$ down) in the 2 scenarios.

■ Global view: We have shown that the same NP solution $C_{9, \mu}^{\mathrm{NP}}=-1.1, C_{9, e}^{\mathrm{NP}}=0$ alleviates all tensions: $P_{5}^{\prime}, R_{K}$, low-recoil, $B_{s} \rightarrow \phi \mu^{+} \mu^{-}, \ldots$
$\rightarrow$ SM 'alternative explanations' becomes obsolete by construction from a global point of view.
■ Local view:

- Factorizable p.c.: We have proven that an inappropriate scheme's choice if correlations are not considered inflates artificially the errors.
- Long-distance charm: Explicit computation by KMPW do not explain the anomaly and a bin-by-bin analysis does not find any indication for a $q^{2}$-dependence.

■ We have proposed different sets of observables comparing $B \rightarrow K^{*} e e \& B \rightarrow K^{*} \mu \mu$.

- $Q_{i}$ Observables: $Q_{i} \longleftrightarrow P_{i}^{\ell}$
- C ${ }_{9 \ell}$ linear Observables: $B_{5,6 s}, \tilde{B}_{5,6 s} \leadsto J_{5,6 s}$
- Tl charm free Observables: $M(\tilde{M})$

■ $\left\langle Q_{i}\right\rangle$ observables allows us to distinguish different $\mathbf{N P}$ scenarios: RHC or $\delta C_{9}$ versus $\delta C_{9}=-\delta C_{10}$.

- $\left\langle B_{5}\right\rangle \&\left\langle B_{6 s}\right\rangle$ but also $\langle\widetilde{M}\rangle$ can be used to measure $\delta C_{10}$ at very low- $\mathrm{q}^{2}$.


## Backup Slide

LHCb currently determines $F_{L, T}$ using a simplified description of the angular kinematics:

$$
\left.\begin{array}{l}
J_{2 s} \\
J_{2 c}
\end{array}\right\} \longmapsto J_{1 c} \text { (equivalent in the massless limit) }
$$

Then, to match this convention, the angular observables are redefined in the following way:

$$
\begin{array}{cl}
F_{L}=\frac{-J_{2 c}}{d G / d q^{2}} \rightarrow \hat{F}_{L}=\frac{J_{1 c}}{d G / d q^{2}} & F_{T}=\frac{4 J_{2 s}}{d G / d q^{2}} \rightarrow \hat{F}_{T}=1-\hat{F}_{L} \\
P_{1}=\frac{J_{3}}{2 J_{2 s}} \rightarrow \hat{P}_{1}=\frac{J_{3}}{2 \hat{J}_{2 s}} & P_{2}=\frac{J_{6 s}}{8 J_{2 s}} \rightarrow \hat{P}_{2}=\frac{J_{6 s}}{8 \hat{J}_{2 s}} \\
P_{3}=-\frac{J_{9}}{4 J_{2 s}} \rightarrow \hat{P}_{3}=-\frac{J_{9}}{4 \hat{\jmath}_{2 s}} & P_{4}^{\prime}=\frac{J_{4}}{\sqrt{-J_{2 s} J_{2 c}}} \rightarrow \hat{P}_{4}^{\prime}=\frac{J_{4}}{\sqrt{\hat{J}_{2 s} J_{1 c}}} \\
P_{5}^{\prime}=\frac{J_{5}}{2 \sqrt{-J_{2 s} J_{2 c}}} \rightarrow \hat{P}_{5}^{\prime}=\frac{J_{5}}{2 \sqrt{\hat{J}_{2 s} J_{1 c}}} & P_{6}^{\prime}=-\frac{J_{7}}{2 \sqrt{-J_{2 s} J_{2 c}}} \rightarrow \hat{P}_{6}^{\prime}=-\frac{J_{7}}{2 \sqrt{\hat{J}_{2 s} J_{1 c}}} \\
P_{8}^{\prime}=-\frac{J_{8}}{\sqrt{-J_{2 s} J_{2 c}}} \rightarrow \hat{P}_{8}^{\prime}=-\frac{J_{8}}{\sqrt{\hat{J}_{2 s} J_{1 c}}} & \text { with } \hat{J}_{2 s}=\frac{1}{16}\left(6 J_{1 s}-J_{1 c}-2 J_{2 s}-J_{2 c}\right)
\end{array}
$$

Why is there a need to compute the predictions from $\hat{F}_{L, T}$ instead of $F_{L, T}$ ? Let's consider the decay distribution

$$
\begin{aligned}
\frac{1}{d(G+\bar{G}) / d q^{2}} \frac{d^{3}(G+\bar{G})}{d O}=\frac{9}{32 \pi} & {\left[\frac{3}{4} \hat{F}_{T} \sin ^{2} \theta_{K}+\hat{F}_{L} \cos ^{2} \theta_{K}\right.} \\
& \left.+\frac{1}{4} F_{T} \sin ^{2} \theta_{K} \cos 2 \theta_{I}-F_{L} \cos ^{2} \theta_{K} \cos 2 \theta_{I}+\ldots\right]
\end{aligned}
$$

- With the current limited statistics, $\hat{F}_{L, T}$ and $F_{L, T}$ cannot be distinguished by LHCb.
- $\cos \theta_{K}^{2}$ is the dominant term, so it is the natural place to extract $F_{L}$.


## The size of power corrections

The ratio $A_{1} / V$ is particularly relevant. Let's illustrate that the size of the error associated to power corrections is much below $10 \%$. We use BSZ for this example.


Ratio of FF computed in BSZ including correlations.


Ratio of FF computed in BSZ taking 5\%, 10\% and $20 \%$ for the error associated to p.c.

Notice that already a $5 \%$ error of power correction is of the same size of the error of the full-FF.

JC-I: Without leaving any loose ends... Is the procedure to compute $P_{5}^{\prime}$ accidentally scheme independent? NO if errors are taken uncorrelated

CDHM'16: In JC'14 the computation of $P_{5}^{\prime}$ is argued to be scheme independent. In helicity basis we find:

$$
\begin{aligned}
P_{5}^{\prime}=\left.P_{5}^{\prime}\right|_{\infty}[1 & +\frac{\mathrm{aV}--\mathrm{a} T_{-}}{\xi_{\perp}} \frac{m_{B}}{|k|} \frac{m_{B}^{2}}{q^{2}} C_{7}^{\text {eff }} \frac{C_{9, \perp} C_{9, \|}-C_{10}^{2}}{\left(C_{9, \perp}^{2}+C_{10}^{2}\right)\left(C_{9, \perp}+C_{9, \|}\right)}-\frac{\mathrm{aV}}{\xi_{+}} \frac{2 \mathrm{C}_{9, \|}}{\mathrm{C}_{9, \perp}+\mathrm{C}_{9, \|}} \\
& \left.+\frac{a V_{0}-a T_{0}}{\xi_{\|}} 2 C_{7}^{\mathrm{eff}} \frac{C_{9, \perp} C_{9, \|}-C_{10}^{2}}{\left(C_{9, \|}^{2}+C_{10}^{2}\right)\left(C_{9, \perp}+C_{9, \|}\right)}+\mathcal{O}\left(\frac{m_{K^{*}}^{2}}{m_{B}^{2}}, \frac{q^{2}}{m_{B}^{2}}\right)\right]
\end{aligned}
$$

OK with JC'14 except for the missing term $\mathrm{aV}_{+}$. Choosing a scheme with $\mathrm{aV}_{-}$or $\mathrm{aT}_{-}$is equivalent.
Only apparently a scheme independent computation in helicity basis for a subset of schemes! The computation should be scheme independent in any basis!!!!
In transversity basis becomes obvious that scheme's choice matters if no correlations are considered:

$$
P_{5}^{\prime}=\left.P_{5}^{\prime}\right|_{\infty}\left[1+\frac{\mathrm{aV}}{\xi_{\perp}} \frac{C_{9, \|}}{C_{9, \perp}+C_{9, \|}}+\frac{\mathrm{aV}-2 \mathrm{aT}_{1}}{\xi_{\perp}} \frac{m_{B}^{2}}{q^{2}} C_{7}^{\mathrm{eff}} \frac{C_{9, \perp} C_{9, \|}-C_{10}^{2}}{\left(C_{9, \perp}^{2}+C_{10}^{2}\right)\left(C_{9, \perp}+C_{9, \|}\right)}-\frac{a A_{1}}{\xi_{\perp}} \frac{C_{9, \perp} C_{9, \|}+C_{10}^{2}}{2\left(C_{9, \perp}^{2}+C_{10}^{2}\right)}+\ldots\right.
$$

The weights of $\mathrm{aV} \& \mathrm{aT}_{1}$ are MANIFESTLY different: $P_{5}^{\prime\left(q^{2}=6\right)}=\left.P_{5}^{\prime}\right|_{\infty}\left(1+\left[0.78 \mathrm{aV}-\mathbf{0 . 2 0} \mathrm{a}_{1}\right] / \xi_{\perp}(6)+\ldots\right.$

$$
\xi_{\perp}^{(1)}\left(q^{2}\right) \equiv \frac{m_{B}}{m_{B}+m_{K^{*}}} V\left(q^{2}\right) \Rightarrow \mathrm{aV}=0(\text { our }) \quad \text { or } \quad \xi_{\perp}^{(2)}\left(q^{2}\right) \equiv T_{1}\left(q^{2}\right) \Rightarrow \mathrm{a} \mathrm{~T}_{1}=0(J C)>3 \text { times bigger }
$$

## Why JC'14 has FFI observables with huge errors and FFD smaller errors?

3) Soft form factor error (undervaluated error):

DHMV: $\xi_{\perp}=\mathbf{0 . 3 1} 1_{-0.10}^{+0.20}$ from KMPW $V=0.36_{-0.12}^{+0.23} \rightarrow \operatorname{err}\left[\left\langle F_{L}\right\rangle_{[0.1,0.98]}^{D H M V^{\prime} 16}\right]= \pm \mathbf{0 . 2 5}$
$J C^{\prime} 14: \xi_{\perp}=\mathbf{0 . 3 1} \pm \mathbf{0 . 0 4}$ spread of only central values (KMPW,BZ,..) no error! $\rightarrow \operatorname{err}\left[\left\langle F_{L}\right\rangle_{[0.1,0.98]}^{J C^{\prime} 14}\right]= \pm \mathbf{0 . 1 8}$.
$\Rightarrow$ This choice of error in $\xi_{\perp}$ induces an undervaluation in JC'14 of the errors for FFD observables

Summary:

Now you have all arguments to analyze misleading statements like:
"Since observables cannot depend on arbitrary scheme definitions, their deviation from the $\infty$-mass limit cannot be reduced" $\dagger$

1) It is not the observables, but the way to compute them where scheme dependence enter!
2) The goal is not to reduce it but the opposite NOT TO INFLATE THEM.
3) Soft form factor error (undervaluated error):

DHMV: $\xi_{\perp}=0.31_{-0.10}^{+0.20}$ from Full-FF of KMPW $V=0.36_{-0.12}^{+0.23}$ with error included.
JC'14: $\xi_{\perp}=0.31 \pm 0.04$ (spread of only central values (KMPW,BZ,..) no error taken!).
FF budget:

$$
\begin{aligned}
& A_{1}=A_{1}^{\text {soft }}+\boldsymbol{\square} A_{1}^{\alpha_{s}}+■ A_{1}^{\square} \\
& A_{1}=\mathbf{0 . 2 5} \\
& +0.16 \\
& \hline 0.16 \\
& (\mathrm{KMPW})
\end{aligned}
$$

- Our error budget:
- $A_{1}^{\text {soft }}=\frac{m_{B}}{m_{B}+m_{K}^{*}} \xi_{\perp}(0)=0.26_{-0.09}^{+0.17}(\mathrm{KMPW})$
- $\llbracket A_{1}^{\alpha_{s}}$ is $\mathcal{O}\left(\alpha_{s}\right)$ and $\llbracket A_{1}^{\mathbb{E}}$ is $\mathcal{O}\left(■ / m_{b}\right) \times \mathrm{FF} \simeq 0.1 \mathrm{FF}$ of full-FF.
- JC error budget:
- $A_{1}^{\text {soft }}=\frac{m_{B}}{m_{B}+m_{K}^{*}} \xi_{\perp}(0)=0.26 \pm 0.03$
- $\llbracket A_{1}^{\alpha_{s}}$ is $\mathcal{O}\left(\alpha_{s}\right)$ and $\llbracket A_{1}^{\square}$ is $\mathcal{O}\left(■ / m_{b}\right) \times \mathrm{FF} \simeq 0.1 \mathrm{FF}$ of full-FF.
$\Rightarrow$ This choice of error in $\xi_{\perp}$ induces an undervaluation in JC'14 of the errors for FFD observables: $A_{F B}, F_{L}$ and $S_{i}$.

