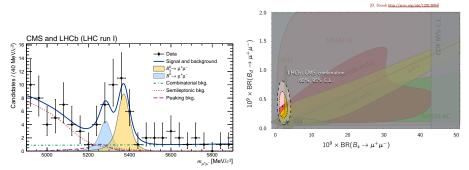
$B^0_s \rightarrow \mu^+ \mu^- \gamma$ from $B^0_s \rightarrow \mu^+ \mu^-$

Francesco Dettori

CERN European Organization for Nuclear Research


LFV/LFUV Workshop Paris

Based on: FD, D. Guadagnoli, M. Reboud - hep-ph/1610.00629

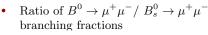
$$B_s^0 \rightarrow \mu^+ \mu^- \gamma \text{ from } B_s^0 \rightarrow \mu^+ \mu^-$$
 LFV/LFUV Paris 1/17

The discovery of $B_s^0 \to \mu^+ \mu^-$ decays

- $B_s^0 \to \mu^+ \mu^-$ golden channel for the search of NP in FCNC
- Strong limits on physics beyond the SM from combined LHC measurement
- Mainly sensitive to (pseudo)scalar contributions

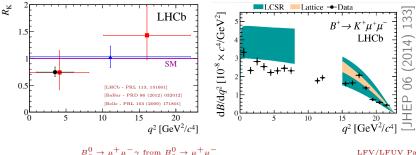
Published in Nature 522, 68-72

$$B_s^0 \to \mu^+ \mu^- \gamma \text{ from } B_s^0 \to \mu^+ \mu^-$$
 LFV/LFUV Paris 2/17

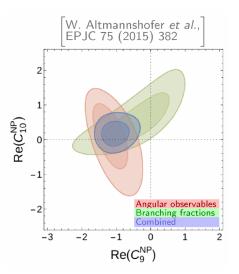

F. Dettori (CERN)

CERN

Status of flavour physics anomalies (1)


Several measurements showing discrepancies with respect to SM

- $B_d^0 \to K^* \mu^+ \mu^-$ angular distributions
- Low $b \to s\mu^+\mu^-$ branching fractions
- Hints of lepton non-universality in $B \to K\ell\ell$ and $B \to D\ell\nu$ decays



Status of flavour physics anomalies (2)

CERN

- All points to the presence of an additional interaction
- Several global fits to Wilson coefficients agree [Buttazzo et al -1604.03940] [Bauer et al - PRL116,141802(2016)] [Crivellin et al - PRL114,151801(2015)]
 [Altmannshofer et al - PRD89(2014)095033]...
- Possible underestimated contributions from cc̄ loops [Lyon et al -1406.0566] [Altmannshofer et al -1503.06199] [Ciuchini et al - JHEP06(2016)116]
- Possible explanation is new high mass boson (Z')
- Can be out of reach for direct production at LHC
- Fundamental to be confirmed with Run II data

$$B_s^0 \to \mu^+ \mu^- \gamma \text{ from } B_s^0 \to \mu^+ \mu^-$$

 $B^0_{\circ} \to \mu^+ \mu^- \gamma$

- $B_s^0 \to \mu^+ \mu^- \gamma$ sensitive to \mathcal{O}_{10} but also \mathcal{O}_9 and \mathcal{O}_7^{\dagger}
- Increasing the number of observables sensitive to these operators is important to confirm or disprove flavour anomalies
- Sensitivity to \mathcal{O}_7 only for very low q^2 (ignored today)

$$B_s^0 \to \mu^+ \mu^- \gamma \text{ from } B_s^0 \to \mu^+ \mu^-$$
 LFV/LFUV Paris 5/17

 $^{^{\}dagger}B_s^0 \rightarrow \mu^+\mu^-\gamma$ studied in detail in: [Aliev et al. - PRD55(1997)7059] [Geng, et al. - PRD62 (2000) 074017] [Dincer, Sehgal - PLB521(2001)714] [Descotes-Genon, Sachrajda - PLB557(2003)213] [Kruger, Melikhov - PRD67(2003) 034002] [Melikhov, Nikitin - PRD70(2004)114028]

F. Dettori (CERN)

$$B^0_{(s)} \to \ell^+ \ell^- \gamma$$
 status

• $B^0_{(s)} \to \ell^+ \ell^- \gamma$ in SM is about one order of magnitude larger than $B^0_{(s)} \to \ell^+ \ell^-$

m_ℓ	m_e			m_{μ}			$m_{ au}$		
$E_{min}^{\gamma} (\text{MeV})$	20	50	80	20	50	80	20	50	80
$Br(B_d \to \ell^+ \ell^- \gamma) \times 10^{10}$ [This work]	3.95	3.95	3.95	1.34	1.32	1.31	3,39	2.37	1.87
$Br\left(B_s \to \ell^+ \ell^- \gamma\right) \times 10^9 \text{ [This work]}$	24.6	24.6	24.6	$18,\!9$	18.8	18.8	11.6	8.10	6.42

• No experimental result on $B_s^0 \to \mu^+ \mu^- \gamma$

• BaBar results on the B^0 modes [BABAR collaboration - PRD77(2008)011104]

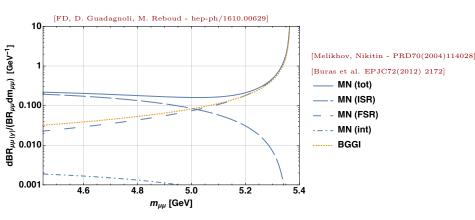
$$\begin{aligned} \mathcal{B}(B^0 \to \mu^+ \mu^- \gamma) < 1.5 \cdot 10^{-7} \\ \mathcal{B}(B^0 \to e^+ e^- \gamma) < 1.2 \cdot 10^{-7} \end{aligned}$$

• No results on the τ modes

$$B_s^0 \to \mu^+ \mu^- \gamma \text{ from } B_s^0 \to \mu^+ \mu^-$$
 LFV/LFUV Paris 6/17

F. Dettori (CERN)

$$B_s^0 \to \mu^+ \mu^- \gamma \ \mathrm{SM}$$

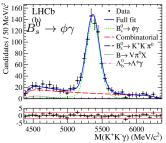


• Final state radiation (= soft bremsstrahlung)

- Initial state ratiation
- Interference

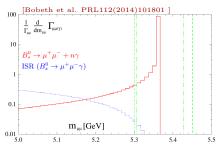
$$B_s^0 \to \mu^+ \mu^- \gamma \text{ from } B_s^0 \to \mu^+ \mu^-$$
 LFV/LFUV Paris 7/17

$$B_s^0 \to \mu^+ \mu^- \gamma \ \text{SM}$$

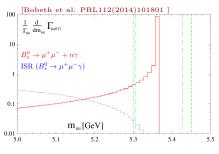

- Interference between ISR and FSR is below 1% of the total spectrum
- Negligible: $B_s^0 \to \mu^+\mu^- + (n\gamma)$ and $B_s^0 \to \mu^+\mu^-\gamma$ can be considered separate processes
- This holds also for beyond the SM: in particular shifts of C_9 and C_{10} of opposite sign diminish the interference

$$B_s^0 \rightarrow \mu^+ \mu^- \gamma \text{ from } B_s^0 \rightarrow \mu^+ \mu^-$$
 LFV/LFUV Paris 8/17

$B^0_s \to \mu^+ \mu^- \gamma$ direct measurement


- Direct measurement of radiative decays is experimentally challenging
 - * Much lower reconstruction efficiency due to the additional photon
 - * Energy share makes the two muons softer (hence smaller efficiency)
 - * Worse mass resultion: higher background
 - * Particularly true for hadron colliders due to the harsh environment
- Nevertheless they can be done if the branching fraction is "large" $B\to\phi\gamma,$ $B\to K^*\gamma$ etc...
- $B^0_s \to \mu^+ \mu^- \gamma$ has the additional difficulty that is also very rare [LHCb NuclPhysB867(2013) 1]

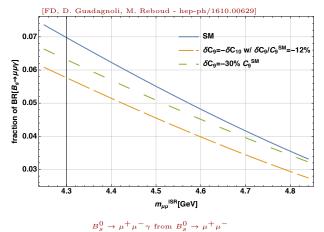
 $B_s^0 \to \mu^+ \mu^- \gamma \text{ from } B_s^0 \to \mu^+ \mu^-$ LFV/LFUV Paris 9/17


Final State Radiation

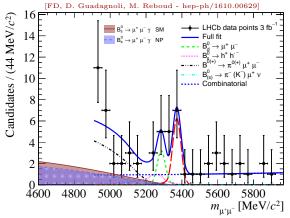
- The radiative tail of the $B_s^0 \to \mu^+\mu^ (+n\gamma)$ decay is experimentally indistinguishable from the $B_s^0 \to \mu^+\mu^-$ itself
- The radiative tail is included up to a certain cut in dimuon mass correspondent to a certain photon energy
- The theoretical branching fraction is resummed to all orders in α_{em}

Final State Radiation (2)

- To compare theory and experiment to search for new physics this has to be taken into account
- Experimentally it is done by using PHOTOS in MC simulations to generate $n\gamma$ from the final state
- This folds the final state contribution into the efficiency and is naturally taken into account
- Technically it is just a modification of the pdf used in the final fits


 $B_s^0 \rightarrow \mu^+ \mu^- \gamma \text{ from } B_s^0 \rightarrow \mu^+ \mu^-$ LFV/LFUV Paris 11/17

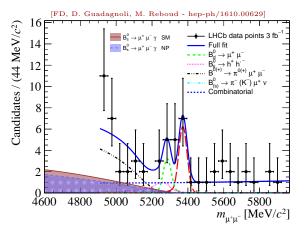
- $B_s^0 \to \mu^+ \mu^- \gamma$ is itself a contamination (background) for the $B_s^0 \to \mu^+ \mu^-$
- Contribution in the signal region is negligible
- Given the invariant mass distribution it is typically "absorbed" in the rest of the backgrounds:
 - * Combinatorial background (typically a free exponential)
 - * Partially reconstructed B decays (Constrained, but with large uncertainties)
- One can reverse the argument: if the background description has not required $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ so far, this must be limited to small branching fractions
- Even more: we can exploit the "shoulder" of the dimuon invariant mass distribution to search for $B_s^0 \to \mu^+ \mu^- \gamma$ decays


$$B_s^0 \rightarrow \mu^+ \mu^- \gamma \text{ from } B_s^0 \rightarrow \mu^+ \mu^-$$
 LFV/LFUV Paris 12/17

Sensitivity

- Fraction of the $B^0_s \to \mu^+ \mu^- \gamma$ spectrum as a function of the dimuon mass lower boundary
- About 4.8% for $m_{\mu\mu} > 4.6 \text{ GeV}$
- Significant changes with possible NP values of Wilson coefficients

Comparing $B_s^0 \to \mu^+ \mu^- \gamma$ to a $B_s^0 \to \mu^+ \mu^-$ search data


Data from LHCb Run I measurement [PRL111(2013)101805]

Assumptions

- Used single event sensitivity to translated branching fraction into yield
- Assumed same efficiency as $B_s^0 \to \mu^+ \mu^-$: true by definition at the end-point, but will fade down far from it

 $B_s^0 \rightarrow \mu^+ \mu^- \gamma \text{ from } B_s^0 \rightarrow \mu^+ \mu^-$ LFV/LFUV Paris 14/17

Comparing $B_s^0 \to \mu^+ \mu^- \gamma$ to a $B_s^0 \to \mu^+ \mu^-$ search data

Data from LHCb Run I measurement [PRL111(2013)101805]

- LHCb just an example, procedure can be applied to all experiments
- Important to constrain the partially reconstructed backgrounds even more

$$B_s^0 \rightarrow \mu^+ \mu^- \gamma \text{ from } B_s^0 \rightarrow \mu^+ \mu^-$$
 LFV/LFUV Paris 14/17

- Method applicable to any $M \to \ell \ell \gamma$ decay
 - * more sensitive for muons and electrons
 - * theoretical uncertainties might dominate (e.g. $D^0 \rightarrow \mu^+ \mu^- \gamma$)
- Method applicable to any $M \to \mu^+ \mu^- X$ but..
 - * the higher M_X the less some (experimental) assumptions are valid
 - * Backgrounds might be too large / unconstrained

Experimental remarks (a biased view)

CERN

While the method is generic I have a biased view...

- I have no doubt this can be applied to LHCb but it requires effort:
 - * Detailed estimate of $B^0_s \to \mu^+ \mu^- \gamma$ efficiency vs $m_{\mu\mu}$ and correspondent integrated efficiency for different models
 - * Precise control of backgrounds from $B \to X \mu \mu$ and others with particle mis-identification which are now too low in mass for $B_s^0 \to \mu^+ \mu^-$ searches
- ATLAS and CMS are in a different position
 - * Have on their side the much larger statistics
 - * Worse dimuon mass resolution (from 25 MeV of LHCb to 30 up to 100 in the GPDs depending on cathegory) can increase the cross-feed with $B_s^0 \rightarrow \mu^+\mu^-$
 - * Difficult to control other B backgrounds without correctly reconstructed proxies, but they have great MC productions
 - * Lack of person power (?): maybe not, we have seen that $B^0_s\to \mu^+\mu^-$ attracted a lot of resources
- Belle II
 - $^{\star}~~$ As soon as data taking starts we will have a new player in town, but mostly on $B_d B^+$
 - * Low background
 - * Full reconstruction might also be feasible $(B_d^0 \to \mu^+ \mu^- \gamma)$

 $B_{\alpha}^{0} \rightarrow \mu^{+}\mu^{-}\gamma$ from $B_{\alpha}^{0} \rightarrow \mu^{+}\mu^{-}$

LFV/LFUV Paris 16/17

Experimental remarks (a biased view)

CERN

While the method is generic I have a biased view...

- I have no doubt this can be applied to LHCb but it requires effort:
 - * Detailed estimate of $B^0_s \to \mu^+ \mu^- \gamma$ efficiency vs $m_{\mu\mu}$ and correspondent integrated efficiency for different models
 - * Precise control of backgrounds from $B \to X\mu\mu$ and others with particle mis-identification which are now too low in mass for $B_s^0 \to \mu^+\mu^-$ searches
- ATLAS and CMS are in a different position
 - * Have on their side the much larger statistics
 - * Worse dimuon mass resolution (from 25 MeV of LHCb to 30 up to 100 in the GPDs depending on cathegory) can increase the cross-feed with $B_s^0 \rightarrow \mu^+\mu^-$
 - * Difficult to control other B backgrounds without correctly reconstructed proxies, but they have great MC productions
 - * Lack of person power (?): maybe not, we have seen that $B^0_s\to \mu^+\mu^-$ attracted a lot of resources
- Belle II
 - $^{\star}~$ As soon as data taking starts we will have a new player in town, but mostly on $B_d B^+$
 - * Low background
 - * Full reconstruction might also be feasible $(B^0_d \to \mu^+ \mu^- \gamma)$

 $B_{\alpha}^{0} \rightarrow \mu^{+}\mu^{-}\gamma$ from $B_{\alpha}^{0} \rightarrow \mu^{+}\mu^{-}$

LFV/LFUV Paris 16/17

Experimental remarks (a biased view)

CERNY

While the method is generic I have a biased view...

- I have no doubt this can be applied to LHCb but it requires effort:
 - * Detailed estimate of $B^0_s \to \mu^+ \mu^- \gamma$ efficiency vs $m_{\mu\mu}$ and correspondent integrated efficiency for different models
 - * Precise control of backgrounds from $B \to X \mu \mu$ and others with particle mis-identification which are now too low in mass for $B_s^0 \to \mu^+ \mu^-$ searches
- ATLAS and CMS are in a different position
 - * Have on their side the much larger statistics
 - * Worse dimuon mass resolution (from 25 MeV of LHCb to 30 up to 100 in the GPDs depending on cathegory) can increase the cross-feed with $B_s^0 \rightarrow \mu^+\mu^-$
 - * Difficult to control other B backgrounds without correctly reconstructed proxies, but they have great MC productions
 - * Lack of person power (?): maybe not, we have seen that $B^0_s\to \mu^+\mu^-$ attracted a lot of resources
- Belle II
 - * As soon as data taking starts we will have a new player in town, but mostly on B_d-B^+
 - Low background
 - * Full reconstruction might also be feasible $(B^0_d \to \mu^+ \mu^- \gamma)$

$$B_s^0 \rightarrow \mu^+ \mu^- \gamma \text{ from } B_s^0 \rightarrow \mu^+ \mu^-$$
 LFV/LFUV Paris 16/17

Conclusions

- $B_s^0 \to \mu^+ \mu^- \gamma$ provides complementary sensitivity to \mathcal{C}_9 and \mathcal{C}_{10}
- Direct measurement might be experimentally far
- Proposed alternative method for search that can arguably provide first mesurements of $B^0_s\to\mu^+\mu^-\gamma$
- Run II LHC mesurements might already give interesting limits or maybe more...

F. Dettori (CERN)

Backup

