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•  Overview of the Algorithm 
-  Signal basis 
-  Signal decomposition algorithm 

-  One hit segment 
-  Two hit segments 
-  More… 
-  Adaptive Grid Search 

•  Strengths and weaknesses, possible improvements 

•  Summary 

Outline 
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•  Digital signal processing to determine the 
number, positions, and energies of gamma 
interactions in the crystal 

•  Uses a “signal basis”; a set of simulated 
signals 

•  Position resolution is crucial for energy 
resolution, efficiency, and peak-to-total ratio 
in tracking 

•  But getting the number of interactions 
correct may be harder, and is at least as 
important 

•  Speed is critical as it determines overall 
gamma throughput of array 

Signal Decomposition 
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Decomposition Fits 
•   Shows two typical multi-segment events measured in prototype triplet cluster (red) 

 (concatenated signals from 36 segments, 500ns time range) 
•   Linear combination of basis signals, as fitted by decomposition algorithm (blue) 
•   Includes differential cross talk from capacitive coupling between channels 
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Expected Distribution of Hits 

GEANT simulations; 
1 MeV gamma into 
GRETA 
 
 
 
Most hit crystals have 
one or two hit segments 
 
Most hit segments have 
one or two interactions 
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•  Signal decomposition algorithm appears to work very well 
•  Validated using simulated signals 

•  Most issues with the decomposition results appear to come from the 
fidelity of the signal basis 

•  Poor fidelity results in 
-  Too many fitted interactions 
-  Incorrect positions and energies 

•  We already include effects of 
-  Integral cross-talk 
-  Differential cross-talk 
-  Preamplifier rise-time 

•  Differential cross-talk signals look like image charges, so they strongly 
affect position determination 

Decomposition Basis  (Signal Library) 
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Current algorithm is a hybrid 
-  Adaptive Grid Search with Linear Least-Squares (for energies) 
-  Non-linear Least-Squares 
-  Have also tried Singular Value Decomposition 

-  Had slightly poorer performance than AGS 
 

•  CPU time required goes as 
-  Adaptive Grid Search :   ~ O(n) 
-  Singular Value Decomp :  ~ O(n) 
-  Nonlinear Least-Squares :  ~ O(n  + δn2) 

     for  n  interactions 

GRETINA Decomposition Algorithm 
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•  Very large parameter space to search 
•  Average segment ~ 6000 mm3, so for ~ 1 mm grid search, 

-  two interactions in one segment: ~ 2 x 106 possible positions 
-  two interactions in each of two segments:   ~ 4 x 1012 positions 
-  two interactions in each of three segments: ~ 8 x 1018 positions 
-  PLUS additional dimensions; energy sharing, time-zero, … 

•  Under-constrained fits, especially with > 1 interaction/segment 
•  For one segment, the signals provide only ~ 6 x 40 = 240  nontrivial 

numbers 

•  Strongly-varying, nonlinear sensitivity 
•   δχ2/δ(θz)  is much larger near segment boundaries 

Why is it Hard? 
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•  The GRETINA Signal Decomposition originally made use of a 
Cartesian grid 

Regular Basis Grid 

•  An irregular quasi-cylindrical grid has several important advantages: 
-  The possibility to optimize the spacing of points in the grid based on 

separation in "Chi-squared space" 
-  Reducing the number of grid points forimproved speed 
-  Constructing the grid around the real segment volumes allows much better 

and faster constraints to be programmed into the least-squares search 
algorithms 

Different colors show 
active regions for 
different segments 
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•  Spacing arranged such that χ2 between 
neighbors is approximately uniform,    
i.e. inversely proportional to sensitivity 

•  Optimizes RAM usage and greatly 
simplifies boundary constraints, … 

•  Karin Lagergren 

Optimized Quasi-Cylindrical Grid 
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Fitting to Extract Cross-Talk Parameters 
•   36 “superpulses”: averaged signals from many single-segment events (red) 
•   Monte-Carlo simulations used to generate corresponding calculated signals (green) 
•   ~ 996 parameters fitted (integral and differential cross-talk, delays, rise times) (blue) 
•   Calculated response can then be applied to decomposition “basis signals” 
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Q4P4 Doppler-reconstructed spectrum for 1779keV from 28Si. Blue: old basis used, Red with new basis. 

Slightly better, isn’t it ;-) (both spectra with same reconstruction parameters). Red: FWHM is 

26keV/1.47%, Blue: FWHM is 16.2%/0.91%. From former analysis with old basis best result for Q4P4 

ever obtained was 23.2keV/1.31%, now we get ‘effortless’ better than 1%. 

 

Same data set, decomposed with old and new bases 
Crystal Q4P4 

Problems with the Basis have a Big Effect 
May 2013 

New basis for Q4P4 (xtal id 35, SpecTcl id 10). Offline decomp run on 100mg Be e11007 data run 128-

144.  

Q4P4 with old basis from 2012. Right: first hit segment vs Doppler corrected 1779keV (28Si) shown.  

 

same data but new basis Q4P4 used. No correction parameter got touched! 
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•  Field and Weighting Potential: 
-  Overall impurity concentration   

(Two values (~20%) from maker, one at each end; depletion voltage) 
-  Longitudinal impurity gradient (Linear? Nonlinear?) 
-  Radial impurity gradient? 
-  Hole diameter; hole depth; etching cycles; lithium thickness 
-  Neutron damage (p-type) 

•  Charge carrier mobilities as a function of electric field 
•  Crystal axis orientation (~ 5 degrees from maker) 
•  Crystal temperature (Some info from RTD) 
•  Cross-talk (differential and integral) 
•  Neutron damage (trapping) 
•  Impulse response of 37 preamps 
•  Charge cloud size 
•  Digitizer nonlinearity 

What Can Affect the Signals? 
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1.  Start by finding approximate t0 

-  Fit a single interaction and time offset using nonlinear least-squares 
-  Five parameters:  x1, e1, t0 

2.  Then find best two-interaction solution 
-  Adaptive grid search using ~ 105 pairs of grid points and best-fit energies 

-  Much more detail about this later 
-  Then interpolate off basis grid using nonlinear least-squares 

-  Two interactions, nine parameters:  x1, e1, x2, e2, t0 

3.  Try adding a third interaction (if total energy is > 400 keV and chisq is bad) 
-  Insert extra interaction in middle of segment, with 1/3 of the energy 
-  Re-do nonlinear least-squares   x1, e1, x2, e2, x3, e3, t0 

4.  Try coalescing two interactions into one 
-  Re-do nonlinear least-squares   x1, e1, t0 

5.  Choose best overall solution, with penalty factor for extra parameters 
(i.e. interactions). End up with 1, 2, or 3 interactions. 

Overall Strategy: One hit segment 
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1.  List hit segments in order of decreasing energy;  ea  >  eb 

2.  Start by finding approximate fit, with one interaction per segment 
-  Nonlinear least-squares    xa1, ea1, xb1, eb1, t0 

3.  Subtract calculated signals for (xb1, eb1, t0) from the measured signals. 
•  Use adaptive grid search to find best two-interaction solution for the 

remainder (segment a). 

4.  Now have three interactions:    xa1, ea1, xa2, ea2, xb1, eb1, t0 

•  Re-fit full signal using nonlinear least-squares, 13 parameters 

5.  Use the same trick: Subtract calculated signals for (xa1, ea1, xa2, ea2, t0) 
from the measured signals. 
•  Use adaptive grid search to find best two-interaction solution for the 

remainder (segment b). 
•  Re-fit full signal using nonlinear least-squares, with 4 interactions   

 xa1, ea1, xa2, ea2, xb1, eb1, xb2, eb2,  t0 

Overall Strategy: Two hit segments 
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6.  For both segments, try coalescing the pairs of interactions into one 
-  Re-do nonlinear least-squares each time 

7.  Choose best overall solution, with penalty factor for extra parameters. 
End up with 2, 3, or 4 interactions. 

 
 

Overall Strategy: Two hit segments 
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1.  List hit segments in order of decreasing energy;  ea  >  eb  >  ec 

2.  Start by finding approximate fit, with one interaction per segment 

•  Three interactions, plus t0 

3.  Subtract calculated signals for segments b and c from the measured 
signals. 
•  Use adaptive grid search to find best two-interaction solution for the 

remainder (segment a). 
•  Re-fit full signal using nonlinear least-squares with 4 interactions 

4.  Repeat step 3 twice more, to get pairs of interactions in segments b 
and c. 

5.  For all segments, try coalescing the pairs of interactions into one,  
 re-doing nonlinear least-squares each time 

6.  Choose best overall solution, with penalty factor for extra parameters. 
End up with 3 – 6 interactions. 

Overall Strategy: Three or more hit segments 
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Adaptive Grid Search Least-Squares 

Adaptive grid search fitting: 

•  Critical that the signals start at t0 = 0 for reliable results! 

•  Use for only one segment at a time 

•  Start on a coarse grid, every second point in each direction (2x2x2) 
-  All the in-segment basis dot products are pre-calculated on this coarse grid 

•  Loop over all pairs of positions inside the segment,  
-  Energies ei and ej are constrained, such that    0.1 (ei+ej)  <  ei  <  0.9 (ei+ej) 

•  Once the best pair of positions (lowest χ2) is found, then all neighbor 
pairs are examined on the finer (1x1x1) grid.  This is 26x26 = 676 pairs.  
If any of them are better, the procedure is repeated. 
-  Here the signal dot-products cannot be pre-calculated 

•  Finally, nonlinear least-squares (SQP) can be used to interpolate off the 
grid.  This improves the fit ~ 50% of the time. 
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Adaptive Grid Search Least-Squares 
Linear Least-Squares

For two interactions of energies ei, ej at locations i and j, the calculated
signal is Ckt = (eisikt + e2sjkt) where k is the segment and t the time
step. sikt is the basis signal calculated at point i.

If the observed signal is Okt

χ2 =
∑

kt

(Okt − Ckt)2

σ2
kt

=

∑
kt(Okt − eisikt − ejsjkt)2

σ2
(1)

where σkt = σ is the uncertainty (noise) in Okt, assumed independent of
k, t.

We want a minimum in χ2, i.e.

∂χ2

∂ei
=

∂χ2

∂ej
= 0 (2)

∂χ2

∂ei
=

2
∑

kt(Oktsikt − eis2
ikt − ejsiktsjkt)

σ2
= 0 (3)
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Adaptive Grid Search Least-Squares 

Thus we get two equations in two unknowns:

∑

kt

Oktsikt − ei

∑

kt

s2
ikt − ej

∑

kt

siktsjkt = 0 (4)

∑

kt

Oktsjkt − ej

∑

kt

s2
jkt − ei

∑

kt

siktsjkt = 0 (5)

We can precalculate ∑

kt

s2
ikt

and ∑

kt

siktsjkt

once for all events, and ∑

kt

Oktsjkt

once per event.
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Adaptive Grid Search: Some Numbers 

(Cartesian grid for illustration purposes): 

•  ~35000 grid points in 1/6 crystal  (one column, 1x1x1 mm)  

•  2x2x2 mm (slices 1-3) or 3x3x3 mm (slices 4-6) coarse grid gives  
 N ≤ 600 course grid points per segment. 

•  For two interactions in one segment, have N(N-1)/2 ≤ 1.8 x 105 pairs of 
 points for grid search.  This takes < 3 ms/cpu  to run through. 

•  Two segments: 
•  (N(N-1)/2)2  ~  3.2 x 1010  combinations for two interactions in each 

 of 2 segments; unfeasible! 
•  Limit N to only 43 = 64 points; then   (N(N-1)/2)2  ~ 4 x 106 

-  This may be possible? But is it worthwhile? 

•  Three segments: 
•  But (N(N-1)/2)3  ~  8 x 109  combinations for two interactions; 

impossible even for N = 64. 
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Adaptive Grid Search: Some Numbers 

•  What about 1-interaction x 1-interaction in two segments, on the  
coarse grid? 

•  Requires a very large number of pre-calculated dot-products 

•  We now calculate ~ 2e5 sums for each of 36 segments 

•  For all pairs of segments, would need ~ 4e5 for 630 pairs 

•  35 times the storage is required 

•  But still only ~ 1.5 GB, roughly the same as the basis signals 

•  Entirely feasible today 

•  But would this be useful? 

•  Remember that the grid search relies on knowing t0 accurately… 
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•  Able to identify up to 2 interactions per segment (three for a single 
segment) 

•  Finds correct solution in simulation tests 
•  Fast 
•  Modest memory requirements 
•  Optimized, irregular grid makes a very significant difference 

-  Took some serious coding and a lot of time on the part of K. Lagergren 

 
•  Poor determination of number of interactions! 
•  Strong covariance between reported interaction positions and t0 

-  t0 distribution is wider than normal CFT distribution  L 

Strengths and Weaknesses 
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•  Extra timing information to constrain t0 
•  External fast detectors or RF signal 
•  Ge-Ge coincidences 

-  Requires event building prior to decomposition; hard! 

•  Tuning of crystal-by-crystal penalty factors for extra interactions 

•  Further improvements in basis fidelity 
•  Preamplifier impulse response function 
•  Include charge cloud size and charge-sharing in signal generation 

-  Especially important at small radius, near segment boundaries 
-  But energy-dependent? 

•  241Am surface-scan “superpulse” fitting for field, WP, electron drift, 
and preamp parameters 

•  Better field determination 
-  Segment capacitance measurements as a function of bias 

What more could be done? 
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What more could be done? 
Removing the ringing

7

Use pulser T.F. constants as a starting point, but allow them to float in a fit 
to physics data — very good agreement in the electronics-dominated 
section

Not floating 
parameters to fit 

this section

•  Preamplifier impulse response function 
•  Ben Shanks (UNC) for point-contact detector 
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What more could be done? 
•  Preamplifier impulse response function 
•  Ben Shanks (UNC) for point-contact detector 

 
 

How’s it look

4
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What more could be done? 
•  Preamplifier impulse response function 
•  Ben Shanks (UNC) for point-contact detector 

•  Fitted parameters include: 
 
 

Physical Parameter 
Interpretation

2

• I had been using a general z-space transfer function, without 
asking about the physical interpretation of the parameters. It turns 
out they mapped exactly to:

X(z) =

�
z2 + c1z

z2 + 2c2z + c2
3

��
z � 1

z � exp(�t/�)

�

Generic 2nd order 
decaying oscillation RC Decay

� exp(�at) cos(�t + �) � exp(�t/�)Two-RC decay

3

• Remember Ben J found two RC constants in many detectors

c ·
�

z � 1

z � exp(�t/�1)

�
+ (1 � c) ·

�
z � 1

z � exp(�t/�2)

�

• When allowed the two-RC model, the fit has strong preference for it (with 
values nearly identical to the ones Ben J found by trying to PZ correct)

•  Two time-constant RC decay: 
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•  The algorithm is very complex 
•  Desired result is computationally under-determined 
•  But the method works reliably when the basis is known perfectly 
•  Fast, relatively modest memory requirements 
•  Basis fidelity is crucial 
•  Can tend to overestimate the number of interactions 

•  Requires penalty factors 

Summary 



29  Managed by UT-Battelle 
 for the U.S. Department of Energy 

Karin Lagergren (ORNL / UTK)‏ 
•  Signal calculation code in C 
•  Optimized pseudo-cylindrical grid 

I-Yang Lee 
•  Original signal calculation code 

C. Campbell, H. Crawford, M. Cromaz, M. Descovich, P. Fallon,  
 A. Machiavelli, … 

•  Basis calculations, cross-talk fits, in-beam data analysis, 
simulations, electric field calculations, and much more 

Tech-X Corp, especially Isidoros Doxas 
•  SVD development 

Acknowledgements 
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Backup 
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Signals color-coded 
for position 

Calculated Signals: Sensitivity to Position 

Hit 
segment 

Image charge Image charge 
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Very roughly: 
•  The full signal -vs.- grid position matrix can be decomposed into the product 

of three matrices, one of which contains the correlations (eigenvalues) 
•  By neglecting the small eigenvalues, the length of the signal vectors (and 

hence computation with them) can be greatly reduced 
•  The more eigenvalues kept, the higher the quality of the fit 

Singular Value Decomposition 

= ≈

 MxN               MxN      NxN          NxN               Mxn   nxn        nxN 

N voltages 

M
 in

te
ra

ct
io

n 
si

te
s 

A = UWVT 
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Very roughly: 
•  The full signal -vs.- grid position matrix can be decomposed into the product 

of three matrices, one of which contains the correlations (eigenvalues) 
•  By neglecting the small eigenvalues, the length of the signal vectors (and 

hence computation with them) can be greatly reduced 
•  The more eigenvalues kept, the higher the quality of the fit 
•  Measured signals can be compressed the same way as, and then compared 

to, the calculated library signals 
•  Different similarity measures can be used to emphasize different aspects 

Singular Value Decomposition 

Dot Product 
 

Cosine 

 
Euclidean Distance 
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•  Distribution of decomposed interaction positions throughout the crystal 

Problems with the Basis have a Big Effect 

Old 

New 


