The GRETINA Signal Decomposition Algorithm

David Radford ORNL Physics Division

AGATA-GRETA Meeting ANL Dec 2016

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Outline

- Overview of the Algorithm
	- Signal basis
	- Signal decomposition algorithm
		- One hit segment
		- Two hit segments
		- More…
		- Adaptive Grid Search
- Strengths and weaknesses, possible improvements
- Summary

Signal Decomposition

- Digital signal processing to determine the *number, positions,* and *energies* of gamma interactions in the crystal
- Uses a "signal basis"; a set of simulated signals
- *Position resolution* is crucial for energy resolution, efficiency, and peak-to-total ratio in tracking
- But getting the *number* of interactions correct may be harder, and is at least as important
- *Speed* is critical as it determines overall gamma throughput of array

Decomposition Fits

- Shows two typical multi-segment events measured in prototype triplet cluster (red) (concatenated signals from 36 segments, 500ns time range)
- Linear combination of basis signals, as fitted by decomposition algorithm (blue)
- Includes differential cross talk from capacitive coupling between channels

Expected Distribution of Hits

GEANT simulations; 1 MeV gamma into **GRETA**

Most hit crystals have one or two hit segments

Most hit segments have one or two interactions

Decomposition Basis (Signal Library)

- Signal decomposition **algorithm** appears to work very well
	- Validated using simulated signals
- Most issues with the decomposition results appear to come from the fidelity of the **signal basis**
- Poor fidelity results in
	- Too many fitted interactions
	- Incorrect positions and energies
- We already include effects of
	- Integral cross-talk
	- Differential cross-talk
	- Preamplifier rise-time
- *Differential cross-talk* signals look like image charges, so they strongly affect position determination

GRETINA Decomposition Algorithm

Current algorithm is a *hybrid*

- Adaptive Grid Search with Linear Least-Squares (for energies)
- Non-linear Least-Squares
- Have also tried Singular Value Decomposition
	- Had slightly poorer performance than AGS
- CPU time required goes as
	- Adaptive Grid Search : \sim O(n)
	- Singular Value Decomp : $\sim O(n)$
	- Nonlinear Least-Squares : $~\sim$ O(n $~+$ δn²)

for n interactions

Why is it Hard?

- Very large parameter space to search
	- Average segment ~ 6000 mm³, so for ~ 1 mm grid search,
		- two interactions in one segment: \sim 2 x 10⁶ possible positions
		- two interactions in each of two segments: $\sim 4 \times 10^{12}$ positions
		- two interactions in each of three segments: $\sim 8 \times 10^{18}$ positions
		- PLUS additional dimensions; energy sharing, time-zero, …
- Under-constrained fits, especially with > 1 interaction/segment
	- For one segment, the signals provide only $\sim 6 \times 40 = 240$ nontrivial numbers
- Strongly-varying, nonlinear sensitivity
	- $\delta \chi^2/\delta(\theta z)$ is much larger near segment boundaries

Regular Basis Grid

• The GRETINA Signal Decomposition originally made use of a Cartesian grid

Different colors show active regions for different segments

- An irregular quasi-cylindrical grid has several important advantages:
	- The possibility to optimize the spacing of points in the grid based on separation in "Chi-squared space"
	- Reducing the number of grid points forimproved speed
- 9 alan algorithms Constructing the grid around the real segment volumes allows much better and faster constraints to be programmed into the least-squares search

Optimized Quasi-Cylindrical Grid

Fitting to Extract Cross-Talk Parameters

- 36 "superpulses": averaged signals from many single-segment events (red)
- Monte-Carlo simulations used to generate corresponding calculated signals (green)
- ~ 996 parameters fitted (integral and differential cross-talk, delays, rise times) (blue)
- Calculated response can then be applied to decomposition "basis signals"

$\frac{d}{dt}$ dopped spectrum for 1779keV from 28Si. Blue: old basis used, Red with new basis used, Red with new basis. In the Basis have a Bid Effect **Problems with the Basis have a Big Effect**

Same data set, decomposed with old and new bases Crystal Q4P4 with old basis from 2012. Right: first hit segment vs Doppler corrected 1779keV (28Si) shown.

12 Managed by UT-Battelle for the U.S. Department of Energy

.
National Laboratory

What Can Affect the Signals?

- Field and Weighting Potential:
	- Overall impurity concentration (Two values (~20%) from maker, one at each end; depletion voltage)
	- Longitudinal impurity gradient (Linear? Nonlinear?)
	- Radial impurity gradient?
	- Hole diameter; hole depth; etching cycles; lithium thickness
	- Neutron damage (p-type)
- Charge carrier mobilities as a function of electric field
- Crystal axis orientation $($ \sim 5 degrees from maker)
- Crystal temperature (Some info from RTD)
- Cross-talk (differential and integral)
- Neutron damage (trapping)
- Impulse response of 37 preamps
- Charge cloud size
- Digitizer nonlinearity

Overall Strategy: One hit segment

- 1. Start by finding approximate t_0
	- Fit a single interaction and time offset using nonlinear least-squares
	- Five parameters: x_1 , e_1 , t_0
- 2. Then find best *two-interaction* solution
	- Adaptive grid search using ~ 105 *pairs* of grid points and best-fit energies
		- Much more detail about this later
	- Then interpolate off basis grid using nonlinear least-squares
		- Two interactions, nine parameters: x_1 , e_1 , x_2 , e_2 , t_0
- 3. Try adding a third interaction (if total energy is > 400 keV and chisq is bad)
	- Insert extra interaction in middle of segment, with 1/3 of the energy
	- Re-do nonlinear least-squares $x_1, e_1, x_2, e_2, x_3, e_3, t_0$
- 4. Try coalescing two interactions into one
	- Re-do nonlinear least-squares x_1, e_1, t_0
- 5. Choose best overall solution, with penalty factor for extra parameters (i.e. interactions). End up with 1, 2, or 3 interactions.

14 Managed by UT-Battelle for the U.S. Department of Energy

Overall Strategy: Two hit segments

- 1. List hit segments in order of decreasing energy; $e_a > e_b$
- 2. Start by finding approximate fit, with one interaction per segment
	- Nonlinear least-squares \mathbf{x}_{a1} , \mathbf{e}_{a1} , \mathbf{x}_{b1} , \mathbf{e}_{b1} , \mathbf{t}_{0}
- 3. Subtract calculated signals for (x_{b1}, e_{b1}, t_0) from the measured signals.
	- Use adaptive grid search to find best *two-interaction* solution for the remainder (segment a).
- 4. Now have three interactions: \mathbf{x}_{a1} , \mathbf{e}_{a1} , \mathbf{x}_{a2} , \mathbf{e}_{a2} , \mathbf{x}_{b1} , \mathbf{e}_{b1} , \mathbf{t}_{0}
	- Re-fit full signal using nonlinear least-squares, 13 parameters
- 5. Use the same trick: Subtract calculated signals for $(x_{a1}, e_{a1}, x_{a2}, e_{a2}, t_0)$ from the measured signals.
	- Use adaptive grid search to find best *two-interaction* solution for the remainder (segment b).
	- Re-fit full signal using nonlinear least-squares, with 4 interactions

x_{a1}, e_{a1} , **x**_{a2}, e_{a2} , **x**_{b1}, e_{b1} , **x**_{b2}, e_{b2} , t_0

Overall Strategy: Two hit segments

- 6. For both segments, try coalescing the pairs of interactions into one
	- Re-do nonlinear least-squares each time
- 7. Choose best overall solution, with penalty factor for extra parameters. End up with 2, 3, or 4 interactions.

Overall Strategy: Three or more hit segments

- 1. List hit segments in order of decreasing energy; $e_a > e_b > e_c$
- 2. Start by finding approximate fit, with one interaction per segment
	- Three interactions, plus t_0
- 3. Subtract calculated signals for segments b and c from the measured signals.
	- Use adaptive grid search to find best *two-interaction* solution for the remainder (segment a).
	- Re-fit full signal using nonlinear least-squares with 4 interactions
- 4. Repeat step 3 twice more, to get pairs of interactions in segments b and c.
- 5. For all segments, try coalescing the pairs of interactions into one, re-doing nonlinear least-squares each time
- 6. Choose best overall solution, with penalty factor for extra parameters. End up with 3 – 6 interactions.

Adaptive Grid Search Least-Squares

Adaptive grid search fitting:

- Critical that the signals start at $t_0 = 0$ for reliable results!
- Use for only one segment at a time
- Start on a coarse grid, every second point in each direction (2x2x2)
	- All the in-segment basis dot products are pre-calculated on this coarse grid
- Loop over *all pairs of positions* inside the segment,
	- Energies e_i and e_j are constrained, such that $0.1 (e_i + e_j) < e_i < 0.9 (e_i + e_j)$
- Once the best pair of positions (lowest χ 2) is found, then all neighbor pairs are examined on the finer $(1x1x1)$ grid. This is $26x26 = 676$ pairs. If any of them are better, the procedure is repeated.
	- Here the signal dot-products cannot be pre-calculated
- Finally, nonlinear least-squares (SQP) can be used to interpolate off the grid. This improves the fit \sim 50% of the time.

Adaptive Grid Search Least-Squares

Linear Least-Squares

For two interactions of energies e_i, e_j at locations i and j, the calculated signal is $C_{kt} = (e_i s_{ikt} + e_i s_{ikt})$ where k is the segment and t the time step. s_{ikt} is the basis signal calculated at point i.

If the observed signal is O_{kt}

$$
\chi^2 = \sum_{kt} \frac{(O_{kt} - C_{kt})^2}{\sigma_{kt}^2} = \frac{\sum_{kt} (O_{kt} - e_i s_{ikt} - e_j s_{jkt})^2}{\sigma^2} \tag{1}
$$

where $\sigma_{kt} = \sigma$ is the uncertainty (noise) in O_{kt} , assumed independent of k, t .

We want a minimum in χ^2 , *i.e.*

$$
\frac{\partial \chi^2}{\partial e_i} = \frac{\partial \chi^2}{\partial e_j} = 0 \tag{2}
$$

$$
\frac{\partial \chi^2}{\partial e_i} = \frac{2 \sum_{kt} (O_{kt} s_{ikt} - e_i s_{ikt}^2 - e_j s_{ikt} s_{jkt})}{\sigma^2} = 0
$$
\n(3)

19 Managed by UT-Battelle for the U.S. Department of Energy

Adaptive Grid Search Least-Squares

Thus we get two equations in two unknowns:

$$
\sum_{kt} O_{kt} s_{ikt} - e_i \sum_{kt} s_{ikt}^2 - e_j \sum_{kt} s_{ikt} s_{jkt} = 0
$$
(4)

$$
\sum_{k} O_{t,k} s_{jkt} - e_i \sum_{k} s_{ik}^2 - e_i \sum_{k} s_{jkl} s_{jkt} = 0
$$
(5)

$$
\sum_{kt} O_{kt} s_{jkt} - e_j \sum_{kt} s_{jkt}^2 - e_i \sum_{kt} s_{ikt} s_{jkt} = 0
$$
\n(5)

We can *precalculate*

$$
\sum_{kt} s_{ikt}^2
$$

and

$$
\sum_{kt}\boldsymbol{s}_{ikt}\boldsymbol{s}_{jkt}
$$

once for all events, and

$$
\sum_{kt} O_{kt} s_{jkt}
$$

once per event.

20 Managed by UT-Battelle for the U.S. Department of Energy

Adaptive Grid Search: Some Numbers

(Cartesian grid for illustration purposes):

- ~35000 grid points in 1/6 crystal (one column, 1x1x1 mm)
- 2x2x2 mm (slices 1-3) or 3x3x3 mm (slices 4-6) coarse grid gives N ≤ 600 course grid points per segment.
- For two interactions in one segment, have $N(N-1)/2 \le 1.8 \times 10^5$ pairs of points for grid search. This takes < 3 ms/cpu to run through.
- Two segments:
	- $(N(N-1)/2)^2 \sim 3.2 \times 10^{10}$ combinations for two interactions in each of 2 segments; unfeasible!
	- Limit N to only $4^3 = 64$ points; then $(N(N-1)/2)^2 \sim 4 \times 10^6$
		- This may be possible? But is it worthwhile?
- Three segments:
	- But $(N(N-1)/2)^3 \sim 8 \times 10^9$ combinations for two interactions; impossible even for $N = 64$.

Adaptive Grid Search: Some Numbers

- What about 1-interaction x 1-interaction in two segments, on the coarse grid?
	- Requires a very large number of pre-calculated dot-products
	- We now calculate \sim 2e5 sums for each of 36 segments
	- For all pairs of segments, would need \sim 4e5 for 630 pairs
		- 35 times the storage is required
		- But still only \sim 1.5 GB, roughly the same as the basis signals
		- Entirely feasible today
- But would this be useful?
- Remember that the grid search relies on knowing t_0 accurately...

Strengths and Weaknesses

- Able to identify up to 2 interactions per segment (three for a single segment)
- Finds correct solution in simulation tests
- Fast
- Modest memory requirements
- Optimized, irregular grid makes a very significant difference
	- Took some serious coding and a lot of time on the part of K. Lagergren

- Poor determination of number of interactions!
- Strong covariance between reported interaction positions and t_0
	- $-$ t₀ distribution is wider than normal CFT distribution \odot

What more could be done?

- Extra timing information to constrain t_0
	- External fast detectors or RF signal
	- Ge-Ge coincidences
		- Requires event building prior to decomposition; hard!
- Tuning of crystal-by-crystal penalty factors for extra interactions
- Further improvements in basis fidelity
	- Preamplifier impulse response function
	- Include charge cloud size and charge-sharing in signal generation
		- Especially important at small radius, near segment boundaries
		- But energy-dependent?
	- ²⁴¹Am surface-scan "superpulse" fitting for field, WP, electron drift, and preamp parameters
	- Better field determination
		- Segment capacitance measurements as a function of bias

What more could be done?

- Preamplifier impulse response function
• Pen Shenke (UNC) for point context detector • Preamplifier impulse response function
	- Ben Shanks (UNC) for point-contact detector

 $t_{\text{25}~\text{Mami}}$ to physics data $-$ very good agreement in the electronics-dominated for the **Section** Use pulser T.F. constants as a starting point, but allow them to float in a fit

What more could be done?

- Preamplifier impulse response function **Id be done?**
pulse response function
- Ben Shanks (UNC) for point-contact detector

26 Managed by UT-Battelle for the U.S. Department of

What more could be done? Physical Parameter

- IL ITIOTE COUIU DE UOITE :
• Preamplifier impulse response function
- Ben Shanks (UNC) for point-contact detector asking about the point contract detector
	- Fitted parameters include:

Summary

- The algorithm is very complex
- Desired result is computationally under-determined
- But the method works reliably when the basis is known perfectly
- Fast, relatively modest memory requirements
- Basis fidelity is crucial
- Can tend to overestimate the number of interactions
	- Requires penalty factors

Acknowledgements

Karin Lagergren (ORNL / UTK)

- Signal calculation code in C
- Optimized pseudo-cylindrical grid
- I-Yang Lee
	- Original signal calculation code
- C. Campbell, H. Crawford, M. Cromaz, M. Descovich, P. Fallon, A. Machiavelli, …
	- Basis calculations, cross-talk fits, in-beam data analysis, simulations, electric field calculations, and much more

Tech-X Corp, especially Isidoros Doxas

• SVD development

Backup

Calculated Signals: Sensitivity to Position

ional Labo

Singular Value Decomposition

Very roughly:

- The full signal -vs.- grid position matrix can be decomposed into the product of three matrices, one of which contains the correlations (eigenvalues)
- By neglecting the small eigenvalues, the length of the signal vectors (and hence computation with them) can be greatly reduced
- The more eigenvalues kept, the higher the quality of the fit

32 Managed by UT-Battelle for the U.S. Department of Energy

Singular Value Decomposition

Very roughly:

- The full signal -vs.- grid position matrix can be decomposed into the product of three matrices, one of which contains the correlations (eigenvalues)
- By neglecting the small eigenvalues, the length of the signal vectors (and hence computation with them) can be greatly reduced
- The more eigenvalues kept, the higher the quality of the fit
- Measured signals can be compressed the same way as, and then compared to, the calculated library signals
- Different similarity measures can be used to emphasize different aspects

Dot Product

\n
$$
x.y = \sum_{i=1}^{N} x_i y_i
$$
\nCosine

\n
$$
\cos(\theta_w) = \frac{x.y}{|x||y|}
$$
\nEuclidean Distance

\n
$$
euclid(x, y) = \sqrt{\sum_{i=1}^{N} (x_i - y_i)^2}
$$

Problems with the Basis have a Big Effect

• Distribution of decomposed interaction positions throughout the crystal

