Inverted Coaxial HPGe Segmented Point Contact Detector

<u>Marco Salathe</u>, Heather Crawford, Ren Cooper Lawrence Berkeley National Laboratory

> David Radford Oak Ridge National Laboratory

7 December 2016 First AGATA-GRETINA tracking arrays collaboration meeting, Argonne National Laboratory

This work is supported by LBNL-LDRD funding under LDRD NS16-128, and by the U.S. Department of Energy, Office of Nuclear Physics, under contract no DE-AC02-05CH11231

What is a Inverted Coaxial HPGe Segmented Point Contact Detector?

- Novel germanium detector technology indented for in beam γ-ray spectroscopy
- n-type material (for increased radiation hardness)
- \sim 7 cm diameter, \sim 8 cm height
- 20 individual segments
 - Point contact (central electrode) on the back
 - 8 wedges around the point contact
 - 8 circular segments on the side
 - 2 circular segments on the front
 - 1 segment in the bore hole

A novel HPGe detector for gamma-ray tracking and imaging. R.J. Cooper, D.C. Radford, P.A. Hausladen, K. Lagergren. Nucl. Instr. and Meth. A 665 (2011) 25-32

What is a Inverted Coaxial HPGe Segmented Point Contact Detector?

- Novel germanium detector technology indented for in beam γ-ray spectroscopy
- n-type material (for increased radiation hardness)
- \sim 7 cm diameter, \sim 8 cm height
- 20 individual segments
 - Point contact (central electrode) on the back
 - 8 wedges around the point contact
 - 8 circular segments on the side
 - 2 circular segments on the front
 - 1 segment in the bore hole
- First prototype build in 2012 and currently at LNBL for characterization and analysis

A novel HPGe detector for gamma-ray tracking and imaging. R.J. Cooper, D.C. Radford, P.A. Hausladen, K. Lagergren. Nucl. Instr. and Meth. A 665 (2011) 25-32

Unusual charge collection for a detectors of this size!

- Germanium detector design principle in the past: majority charge carrier are collected at the nearest electrode
- This detector: majority charge carriers drift through the detector to the point contact
- Large variety in drift time of charge carrier
- Relatively long drift times (up to 1.6μs)
- After an initial phase, charge carrier follow similar trajectories

The drift time is a proxy for the z-position (height) of an interaction

Good positional resolution and hit number discrimination

- In beam gamma-ray tracking requires good positional resolution for each interaction in an event
- Simulations suggest that the Inverted Coaxial HPGe Segmented Point Contact Detector has a positional resolution 4-5 times higher than GRETINA detectors

A novel HPGe detector for gamma-ray tracking and imaging. R.J. Cooper, D.C. Radford, P.A. Hausladen, K. Lagergren. Nucl. Instr. and Meth. A 665 (2011) 25-32

Good positional resolution and hit number discrimination

- In beam gamma-ray tracking requires good positional resolution for each interaction in an event
- Simulations suggest that the Inverted Coaxial HPGe Segmented Point Contact Detector has a positional resolution 4-5 times higher than GRETINA detectors
- Individual interactions can be distinguished because of variations in arrival time of electrons at the point contact

A novel HPGe detector for gamma-ray tracking and imaging. R.J. Cooper, D.C. Radford, P.A. Hausladen, K. Lagergren. Nucl. Instr. and Meth. A 665 (2011) 25-32

Good positional resolution and hit number discrimination

- In beam gamma-ray tracking requires good positional resolution for each interaction in an event
- Simulations suggest that the Inverted Coaxial HPGe Segmented Point Contact Detector has a positional resolution 4-5 times higher than GRETINA detectors
- Individual interactions can be distinguished because of variations in arrival time of electrons at the point contact
- Because of the long drift time multiple interactions can be observed separated on segments

A novel HPGe detector for gamma-ray tracking and imaging. R.J. Cooper, D.C. Radford, P.A. Hausladen, K. Lagergren. Nucl. Instr. and Meth. A 665 (2011) 25-32

Single-site event (SSE) cut

- The amplitude of the current pulse measured at the point contact is normalized by the uncalbrated energy ⇒ A/E qualifier
- A/E distribution measured in Compton edge, cut levels defined at ± 2 FWHM of SSE peak centroid
- Distribution from simulation and measurements agree well
- SSE fractions (measurement): 19.2% at 662 keV 13.6% at 1173 keV, 12.8% at 1332 keV

For simplicity only events with a single interaction are considered in further discussion

Computation of azimuthal angle

Positional reconstruction

Up to now only the azimuth of a given event is computed.

- Measurements at 2.5 degree increments: highly collimated (1 mm diameter) ¹³⁷Cs source at a radius of 24 mm
- Only consider single site events in 661.7 keV peak
- Using the eight wedges on the back (no angular information on remaining segments)
- Build average pulse shape for each angle (example at 180 degree)
- Compare each individual event with average pulse shape and find the best match (χ^2 difference)

Results - Azimuthal angle reconstruction

 Source angle and reconstructed angle agree well (highly collimated ¹³⁷Cs source at a radius of 24 mm and 2.5 degree increments)

Results - Azimuthal angle reconstruction

- Source angle and reconstructed angle agree well (highly collimated ¹³⁷Cs source at a radius of 24 mm and 2.5 degree increments)
- Angular distribution of events (same measurement as previous) agrees with a Monte Carlo simulation (Geant4)

Results - Azimuthal angle reconstruction

- Source angle and reconstructed angle agree well (highly collimated ¹³⁷Cs source at a radius of 24 mm and 2.5 degree increments)
- Angular distribution of events (same measurement as previous) agrees with a Monte Carlo simulation (Geant4)
- Relatively homogeneous distribution observed in a flood measurement (uncollimated ⁶⁰Co source at 4 inch distance)

Charge trapping effects

A fraction of the charge carrier in germanium detector gets stuck (trapped) during the drift from the interaction site to the read-out electrode

Charge trapping increases roughly linearly with drift time

Charge trapping increases roughly linearly with drift time

- Divide data in 100 ns slices
- Calculate peak position for each slice

Charge trapping increases roughly linearly with drift time

- Divide data in 100 ns slices
- Calculate peak position for each slice
- Produce a drift time correction curve from peak positions
- Linear interpolate between peaks

Charge trapping increases roughly linearly with drift time

- Divide data in 100 ns slices
- Calculate peak position for each slice
- Produce a drift time correction curve from peak positions
- Linear interpolate between peaks
- Correct energy according to drift time curve

Works well at low drift times, however large spread at long drift times

Charge trapping effects

Charge trapping must depend on other variables:

Charge trapping effects

Charge trapping must depend on other variables: Obvious solution \Rightarrow Angular dependence

Angular charge trapping correction

Measurements

Highly collimated (1 mm diameter) 137 Cs measurement at a radius of 24 mm. Individual measurements at 2.5 degree increments. Only consider single site events in 661.7 keV peak.

- Extract charge trapping strength as a function of drift time for each measurement (angle) separately
- Reconstruct azimuthal angle of an event with previously described algorithm
- Correct energy as a function of drift time with the correction extracted for a given angle

Results - Angular charge trapping correction

Measurement

Uncollimated 60 Co source centered in the front of the detector (~4 inch distance)

Results - Angular charge trapping correction

Measurement

Uncollimated 60 Co source centered in the front of the detector (~4 inch distance)

- Without any correction peak is strongly distorted
- Drift time correction (without considering the azimuth) improves the energy resolution, but strong low energy tail remains
- Azimuth correction removes most of the tail

Results - Peak shape

Measurement

Uncollimated 60 Co source centered in the front of the detector (~4 inch distance)

- Without any correction peak is strongly distorted
- Drift time correction (without considering the azimuth) improves the energy resolution, but strong low energy tail remains
- Azimuth correction removes most of the tail
- Peak is mostly Gaussian, but a small amount of tailing remains
- Resolution of 3.44 keV for single site events

Summary

Inverted Coaxial HPGe Segmented Point Contact Detector (n-type)

- First characterization has been performed
- The point contact signal helps to extract number of interactions
- The azimuth of a single site event can be reconstructed
- The angular and longitudinal charge trapping strength has been mapped out and a correction function implemented
- A large improvement in energy resolution was achieved

Outlook

- Full reconstruction of event position (radial/longitudinal position)
- Signal decomposition of multiple site events

• Is it possible to improve the resolution even further?

• Does the azimuth reconstruct works at all radius?

• What about events with multiple interactions?

• Is it possible to improve the resolution even further?

 \Rightarrow Variations at different angles seem to be intrinsic properties, a large improvement is unlikely. By performing the drift time correction on individual 1° slices the resolution improves by roughly 0.1 keV.

• Does the azimuth reconstruct works at all radius?

• What about events with multiple interactions?

• Is it possible to improve the resolution even further?

 \Rightarrow Variations at different angles seem to be intrinsic properties, a large improvement is unlikely. By performing the drift time correction on individual 1° slices the resolution improves by roughly 0.1 keV.

• Does the azimuth reconstruct works at all radius?

 \Rightarrow No, at radius different from 24 mm there is an additional angular shift. The shift does not affect the energy resolution.

• What about events with multiple interactions?

• Is it possible to improve the resolution even further?

 \Rightarrow Variations at different angles seem to be intrinsic properties, a large improvement is unlikely. By performing the drift time correction on individual 1° slices the resolution improves by roughly 0.1 keV.

• Does the azimuth reconstruct works at all radius?

 \Rightarrow No, at radius different from 24 mm there is an additional angular shift. The shift does not affect the energy resolution.

• What about events with multiple interactions?

 \Rightarrow Already single site event procedure works relatively well. Further improvement expected from signal decomposition.

