## Bayes-Tracking – A new Approach for Gamma-Ray Tracking



P. Napiralla, C. Stahl, H. Egger, M. Reese, N. Pietralla



#### **Existing Gamma-Ray Tracking Algorithms**



Existing algorithms: Forward-Tracking, Back-Tracking

- Identification of most probable photon paths
- Summation of measured deposited energies

Problem: Compton-escaped photons "useless"

 $\Rightarrow$  New algorithm which also utilises Compton-escaped photons using *Bayesian inference*, called **Bayes-Tracking** 

#### **Bayes-Tracking**



Requirements on new Bayes-Tracking algorithm

- Goal: Identify correct ingoing photon energy E<sub>γ</sub> (using Compton-Escapeand/or Photoabsorption-Events; no pair-production yet)
- ► **Data**: Interactions of photon with detector with deposited energies  $\{E_{dep_1}, E_{dep_2}, ..., E_{dep_N}\}$  at measured interaction points  $\{\vec{x}_1, \vec{x}_2, ..., \vec{x}_N\}$

 $\Rightarrow$  Calculate probability of photon energy  $e_0$  given the interactions with energy depositions  $\{E_{dep_1}, \dots, E_{dep_N}\}$  at  $\{\vec{x}_1, \dots, \vec{x}_N\}$ :

 $\Rightarrow P\left(e_{0} | \left\{ \{E_{\mathsf{dep}_{1}}, \vec{x}_{1}\}, \dots, \{E_{\mathsf{dep}_{N}}, \vec{x}_{N}\} \right\} \right)$ 

#### Bayes-Tracking Bayes' theorem



Let A and B be two events. The conditional probability of B, given A is true

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

can be calculated by Bayes' theorem

$$P(hypothesis|data) = \frac{P(data|hypothesis) \cdot P(hypothesis)}{P(data)}$$

#### Bayes-Tracking Bayes' theorem



Let A and B be two events. The conditional probability of B, given A is true

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

can be calculated by Bayes' theorem

$$P(hypothesis|data) = \frac{P(data|hypothesis) \cdot P(hypothesis)}{P(data)}$$

- P(data): evidence
  - $\rightarrow$  (naive) knowledge about *data*
- P (hypothesis): prior probability
  - $\rightarrow$  (naive) knowledge about *hypothesis*
- P (data hypothesis): likelihood function
  - $\rightarrow$  testing plausibility of *data*, given *hypothesis* is true
- P (hypothesis|data): posterior probability
  - $\rightarrow$  probability of *hypothesis* being true, given *data*

#### **Bayes-Tracking**



Probability of photon energy  $e_0$  given a certain set of energy-depositions:

$$P\left(e_{0}|\left\{\{E_{dep_{1}}, \vec{x}_{1}\}, \dots, \{E_{dep_{N}}, \vec{x}_{N}\}\right\}\right) \propto \sum_{\pi} P\left(\pi\left(\{E_{dep_{1}}, \vec{x}_{1}\}, \dots, \{E_{dep_{N}}, \vec{x}_{N}\}\right)|e_{0}\right)$$

Function of permutations  $\pi (E_{dep_1}, ..., E_{dep_N})$ .

Sources of information:

- ► Compton-scattering for i = 1, ..., N 1 (Number of interactions N) (P<sub>int</sub>)
- Distances between the interaction points (P<sub>λ</sub>)
- Last interaction: Compton- or photoelectric effect possible (Plast)

Important: Measurement uncertainties for  $\vec{x}_i$  and  $E_{dep_i}$  present ( $\mathcal{G}_{3D}$  and  $\mathcal{G}$ )

#### **Bayes-Tracking**



Likelihood function can be calculated via:

$$P\left(\{\vec{x}_{1}, E_{dep_{1}}\}, \dots, \{\vec{x}_{N}, E_{dep_{N}}\} | e_{0}\right) = \int \prod_{i=1}^{N-1} [P_{int}\left(\{\vec{\mu}_{i}\}, e_{i-1}\right) \cdot P_{\lambda}\left(\vec{\mu}_{i-1}, \vec{\mu}_{i}, e_{i-1}\right) \\ \cdot \mathcal{G}_{3D}\left(\vec{x}_{i}, \vec{\mu}_{i}, \hat{\sigma}_{x}\right) \cdot \mathcal{G}\left(E_{dep_{i}}, \mathcal{E}(\{\vec{\mu}_{i}\}, e_{i-1}), \sigma_{E}\right)] \\ \cdot P_{last}\left(\vec{\mu}_{N-1}, \vec{\mu}_{N}, e_{N-1}, E_{dep_{N}}\right) d\vec{\mu}_{0} \cdots d\vec{\mu}_{N}.$$

- ► Likeliness for scattering of photon with energy  $e_{i-1}$  by angle  $\theta(\{\vec{\mu}_i\})$
- Probability for no interaction between  $\vec{\mu}_{i-1}$  and  $\vec{\mu}_i$
- ▶ Probability to measure  $\vec{\mu}_i$  as  $\vec{x}_i$  ( $\mathcal{G}_{3D}$ ) and  $\mathcal{E}(\{\vec{\mu}_i\}, e_{i-1})$  as  $E_{dep_i}$  ( $\mathcal{G}$ )
- Last interaction: Possible Photoelectric- or Compton effect

$$\mathcal{E}\left(\{\vec{\mu_i}\}, e_{i-1}\right) = e_{i-1} \cdot \left[1 - \left(1 + \frac{e_{i-1}}{m_{e_0}c^2} \left[1 - \cos\left(\theta(\{\vec{\mu_i}\})\right)\right]\right)^{-1}\right]$$

### Bayes-Tracking – Generating "Test-data"

Ge Detector Simulation (using Geant4)





Figure: Geometry of the simulated Ge detector (edge length a = 8 cm) with photon source S.

# **Bayes-Tracking – Single Photons**

#### **Compton- and Photo-Events**





Figure: Likelihood functions for Photo- and Compton-Events with N = 3 and correct photon energy  $E_{\gamma} = 1.5 \text{ MeV}$ 

- For large scattering angles  $\theta$ : "Reconstruction" of  $E_{\gamma}$  accurately
  - $\Rightarrow$  even for Compton-Escape Events!
- For small scattering angles  $\theta$ : Almost no ability to reconstruct  $E_{\gamma}$  correctly

# Bayes-Tracking – Tracking Performance

#### TECHNISCHE UNIVERSITÄT DARMSTADT

#### **Compton- and Photo-Events**



Figure: Histogram (logarithmic and linear) for most likely reconstructed photon energies (3000 Compton-Events, 792 Photo-Events) with  $E_{\gamma} = 1.5$  MeV compared to total deposited energy spectrum ( $\hat{=}$  measured spectrum of a plain Ge detector).

#### Photo-Efficiencies $\epsilon = N_{Photo-Peak}/N_{total}$ :

- Total deposited energies:  $\epsilon = 20.9\%$
- ► Reconstructed energies:  $\epsilon = \epsilon_{Photo-Ev.} + \epsilon_{Compton-Ev.} = 17\% + 3.4\% = 20.4\%$

#### **Conclusion & Outlook**



Conclusion:

- Bayes-Tracking as a new method using Bayesian inference
- Good energy reconstruction using Photo- and Compton-Events Outlook:
  - > >

#### **Conclusion & Outlook**



Conclusion:

- Bayes-Tracking as a new method using Bayesian inference
- Good energy reconstruction using Photo- and Compton-Events

Outlook:

- Faster integration method (e.g. using sparse grids)
- Incorporation of pair production and photon polarization
- Implement AGATA geometry and embed Bayes-Tracking into AGATA framework NARVAL/FEMUL





Figure: Results of the Bayes-Tracking for Compton-Events with ingoing photon energies  $E_{\gamma} = 0.25 \text{ MeV}$  (a) and 0.5 MeV (b) with N = 2.





Figure: Results of the Bayes-Tracking for Compton-Events with ingoing photon energies  $E_{\gamma} = 0.75 \text{ MeV}$  (a) and 1.0 MeV (b) with N = 3.





Figure: Results of the Bayes-Tracking for Compton-Events with ingoing photon energies  $E_{\gamma} = 1.25 \text{ MeV}$  (a) and 1.75 MeV (b) with N = 3.



Compton-Events for  $E_{\gamma} = 2.0$  MeV, N = 3 $10^{-15}$  $\sum E_{dep} = 1.855 \text{ MeV},$  $\theta = (102.5^\circ, 91.5^\circ)$  $10^{-17}$  $\sum E_{dep} = 1.439$  MeV,  $10^{-19}$  $\vec{\theta} = (55.1^{\circ}, 77.2^{\circ})$  $10^{-21}$ Likelihood function  $10^{-23}$  $10^{-25}$  $10^{-27}$  $10^{-29}$  $10^{-31}$  $10^{-33}$  $10^{-35}$  $10^{-3}$  $e_0$  in MeV

Figure: Results of the Bayes-Tracking for Compton-Events with ingoing photon energies  $E_{\gamma} = 2.0 \text{ MeV}$  with N = 3.





Figure: Comparison of photons with three and four interactions inside the detector that either deposited their whole energy (a), or 1.16 MeV (b).





Figure: Comparison of photons that deposited 1.3 MeV inside the detector in three and four interactions (a). In addition, the influence of a smaller amount of interactions is shown in (b) for  $E_{\gamma} = 0.25$  MeV and  $\sum E_{dep} = 0.147$  MeV for three and two interactions.



Figure: Energy reconstruction for N = 3 with  $E_{\gamma} = 0.25$  MeV and 0.5 MeV compared to the respective total deposited energy.

#### **Additional plots** TECHNISCHE DΑ 10 Reconstructed energies Reconstructed energies Total deposited energies Total deposited energies $10^{2}$ 200 Counts Counts 10 e<sub>0</sub> in MeV 1.5 e<sub>0</sub> in MeV

(a)  $E_{\mu} = (0.75 \pm 0.005) \text{ MeV}, N_P/N_C = 0.6$ 

(b)  $E_{\mu} = (1.0 \pm 0.005) \text{ MeV}, N_P/N_C = 0.44$ 

Figure: Energy reconstruction for N = 3 with  $E_{\gamma} = 0.75$  MeV and 1.0 MeV compared to the respective total deposited energy.

#### **Additional plots** TECHNISCHE 10 Reconstructed energies Reconstructed energies Total deposited energies Total deposited energies $10^{2}$ 200 Total Counts

8 10<sup>0</sup> 10<sup>0</sup> 10<sup>0</sup> 10<sup>1</sup> 10<sup>1</sup>

(a)  $E_{\mu} = (1.25 \pm 0.005) \text{ MeV}, N_P/N_C = 0.34$ 

(b)  $E_{\mu} = (1.75 \pm 0.01) \text{ MeV}, N_P/N_C = 0.22$ 

Figure: Energy reconstruction for N = 3 and  $E_{\gamma} = 1.25$  MeV and 1.75 MeV compared to the respective total deposited energy.





Figure: Energy reconstruction for N = 3 with  $E_{\gamma} = (2.0 \pm 0.01)$  MeV ( $N_P/N_C = 0.21$ ) compared to the respective total deposited energy.



Figure: Histogram of  $\ln(||(p_n)_n||_{\ell^2}^2)$  for the general ingoing directions of the background photons (front, side, back of detector) (a) and  $\ln(||(p_n)_n||_{\ell^2}^2)$  depending on the exact angle between the source photon direction and the background photon direction  $\alpha$  (b).





Figure: Histogram for background photons that yielded a likelihood function of zero depending on their angle of incidence  $\alpha$ .





Figure: Influence of the total deposited energy  $\sum E_{dep}$  on the reconstructed energy  $E_{BT}$ .



Compton-Event for  $E_{\gamma} = 0.25$  MeV and  $\sum E_{dep} = 0.123$  MeV,  $\theta = 118.1^{\circ}$ , N = 2



# Figure: Influence of the interaction point measurement uncertainty $\sigma_x$ on the likelihood function5.