**Theorie LHC France workshop** 7-9 Novembre 2016 IPN Orsay

# Self-interacting Dark Matter

Bryan Zaldívar @ Annecy

# Outline

- Thermal histories of dark matter
- Small-scale problems of CDM
- Self-interacting DM and issues
- Proposition and results

# **Different thermal histories of DM**



### **Different thermal histories of DM**



#### Dark Freeze-out (T' < T)

- Freeze-in production + dark annihilation

T': temperature of dark sector

T': temperature of visible sector

### **Small-scale problems of CDM**

"Cusp vs. Core"



"Missing satellite problem": it is going down with recent discoveries and prospects

### Alternatives so far...

#### 1) Baryonic effects

Baryonic matter can evacuate DM from the central regions

[Navarro et al, 1996, MNRAS, 283, L72] [Pontzen and Governato, 2012, MNRAS, 421, 3464]

#### 2) Warm dark matter

Free-streaming of ~keV DM predict less dense haloes today

[Lovell et al, 2012, MNRAS, 420, 2318] [Becker et al, 1306.2314]

#### **3)** Self-interacting dark matter

a) cored profiles, b) offset between centroids of galaxies and DM halos

[Carlson et al, Astrophys.J. 398 (1992) 43-52] [Tulin et al, 1302.3898] [Kahlhoefer et al, 1308.3419] [Bernal et al, 1510.08063]



# **Self-interacting dark matter**

**Galactic scales (**  $v \sim 10 \ {\rm km/s}$  **)** 

Simulations:

$$0.1 \lesssim \sigma/m \lesssim 10 \; {
m barn/GeV}$$
 [Kaplinghat et al, 1508.03339]

 $\star$  Cluster scales (  $v \sim 1000 {
m ~km/s}$  )

**Observations:** 

 $\sigma/m \lesssim \mathcal{O}(1) \text{ barn/GeV}$ 

[Clowe et al, 0704.0261]



- Compatibility achieved by velocity dependence

- Typical WIMP cross sections are  $10^{12}$  times smaller!



# Self-interacting dark matter (SIDM)

#### **Essentially two ways to obtain such large cross sections:**



"Landau-Lifshitz" physics (Schröndinger equation, non-perturbative enhancements,...)

 $m_\eta \ll \alpha_{\rm DM} m_{\rm DM}$ 

 $m_\eta \gg v m_{\rm DM}$ 



# Phenomenological issues of SIDM models



# Phenomenological issues of SIDM models



# Proposal

# Essentially all problems above came because of having sizeable couplings with the SM



Relax that, and find otherdark matter genesis comatible with self-interactions while having smaller couplings

### **Illustrative model: HVDM**

[Hambye, 0811.0172]

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4} F'^{\mu\nu} \cdot F'_{\mu\nu} + (D_{\mu}\phi)^{\dagger} (D^{\mu}\phi) - \mu_{\phi}^{2} \phi^{\dagger}\phi - \lambda_{\phi} (\phi^{\dagger}\phi)^{2} - \lambda_{m} \phi^{\dagger}\phi H^{\dagger}H$$
  
$$SU(2)_{X} \cdot \text{Gauge bosons: DM candidates} \quad \text{(degenerated, Custodial symmetry)}$$

• Real Scalar boson, Higgs portal



## Light mediator, Freeze-In Regime



From Self-Interactions

From relic abundance

OK with all the rest of constraints

### Heavy mediator, colder dark freeze-out

[Bernal et al, 1510.08063]



### Conclusions

Out-of-equilibrium DM can accommodate enough selfinteractions, while successfully avoiding several phenomenological issues



#### Are you kidding me??

Bckp slides

#### **Proposal:**

#### Relax the equilibrium condition with the visible sector

|                                  | Lighter mediator $(m_\eta \ll m_\chi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Heavier mediator $(m_\eta\gtrsim m_\chi)$                                                                                                        |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Freeze-In<br>( no T' )           | $Y_\eta \sim Y_A$ (same creation from SM) (same creation from SM) $\Omega_\eta \ll \Omega_\chi$ (ok with BBN) $g_\chi \sim 10^{-3}$ (ok with Self-Int)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $g_\chi \ll 1$ (No Self-Int) or $m_\eta \sim \mathcal{O}({\rm keV})$ (watch-out Hot DM)                                                          |
| Dark<br>Freeze-out<br>( T' < T ) | $\begin{split} Y_{\eta} \gg Y_{A}  \text{(from eq.)}   \\ \begin{tabular}{lll} \hline & & \\ \end{tabular} \\ ta$ | 3-to-2 dominates over 2-to-2 (requiring self-int and Small connector couplings)<br>Ok with Structure Form. Smaller $g_{\chi}$ (ok with perturb.) |