Comprehensive Dark Matter Searches

The (Inconvenient) Truth about DM

We have many hints DM exist, **but no direct evidence!** If particle DM exists, **what do we know about it**?

Dark Matter:

- 1. Mass = ???
- 2. Spin = ???
- 3. Decays = ???
- 4. Interactions = <u>Gravity</u>, ???
- 5. Elementary = ???

DM could in principle only interact gravitationally... ... in which case, the rest of this talk is completely useless

6.

The (Inconvenient) Truth about DM

In fact, we have almost **no sense of energy scale** associated with DM!

The (Inconvenient) Truth about DM

In fact, we have almost **no sense of energy scale** associated with DM!

DM Simplified Models It is hence **imperative** to cover as much ground as possible:

One option is to study **simplified models**:

Probably the "best deal for your buck".

Simplified models allow to cover many classes of UV complete theories.

DM Simplified Models

Simplified models "standardized":

Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum

August 8, 2016

- Daniel Abercrombie MIT, USA
- Nural Akchurin Texas Tech University, USA
- Ece Akilli Université de Genève, DPNC, Switzerland
- Juan Alcaraz Maestre Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain
- Brandon Allen MIT, USA
- Barbara Alvarez Gonzalez CERN, Switzerland
- Jeremy Andrea Institut Pluridisciplinaire Hubert Curien/Département Recherches Subatomiques, Université de Strasbourg/CNRS-IN2P3, France
- Alexandre Arbey Université de Lyon and Centre de Recherche Astrophysique de Lyon, CNRS and
- Ecole Normale Supérieure de Lyon, France and CERN Theory Division, Switzerland
- Georges Azuelos University of Montreal and TRIUMF, Canada
- Patrizia Azzi INFN Padova, Italy

Example (vector mediator):

Couplings to the dark sector:

Couplings to the quarks:

LHC Dark Matter Working Group:

Recommendations on presenting LHC 900 searches for missing transverse energy signals using simplified *s*-channel models of dark matter

Antonio Boveia,^{1,*} Oliver Buchmueller,^{2,*} Giorgio Busoni,³ Francesco D'Eramo,⁴ Albert De Roeck,^{1,5} Andrea De Simone,⁶ Caterina Doglioni,^{7,*} Matthew J. Dolan,³ Marie-Helene Genest,⁸ Kristian Hahn,^{9,*} Ulrich Haisch,^{10,11,*} Philip C. Harris,¹ Jan Heisig,¹² Valerio Ippolito,¹³ Felix Kahlhoefer,^{14,*} Valentin V. Khoze,¹⁵ Suchita Kulkarni,¹⁶ Greg Landsberg,¹⁷ Steven Lowette,¹⁸ Sarah Malik,² Michelangelo Mangano,^{11,*} Christopher McCabe,^{19,*} Stephen Mrenna,²⁰ Priscilla Pani,²¹ Tristan du Pree,¹ Antonio Riotto,¹¹ David Salek,^{19,22} Kai Schmidt-Hoberg,¹⁴ William Shepherd,²³ Tim M.P. Tait,^{24,*} Lian-Tao Wang,²⁵ Steven Worm²⁶ and Kathryn Zurek²⁷

 $\mathcal{L}_{X_{D}}^{Y_{1}} = \bar{X}_{D}\gamma_{\mu}(g_{X_{D}}^{V} + g_{X_{D}}^{A}\gamma_{5})X_{D}Y_{1}^{\mu}$ $\mathcal{L}_{\rm SM}^{Y_1} = \sum \left[\bar{d}_i \gamma_\mu (g_{d_{ij}}^V + g_{d_{ij}}^A \gamma_5) d_j \right]$ $+ \bar{u}_i \gamma_\mu (g^V_{u_{ij}} + g^A_{u_{ij}} \gamma_5) u_j | Y_1^\mu$

DM Simplified Models at LHC

Recently **much exp. effort** to study Simplified Models at colliders:

- 35 DM papers from CMS

Dark Matter (DM) searches

DM searches at the interface of collider physics, astrophysics and cosmology:

	Experiments	Example process measured
Direct Detection	LUX, Xenon, LZ	$p/n \ \chi \to p/n \ \chi$
Indirect Detection	AMS, FERMI/LAT	$\chi \chi \to e^+ e^-, p \bar{p}, \gamma \gamma$
Colliders	LHC	$pp \rightarrow \chi \chi + j, Z, \gamma$
Cosmology	WMAP, Planck	$\chi\chi \to \mathrm{all}$

Dark Matter (DM) searches

DM searches at the interface of collider physics, astrophysics and cosmology:

	Experiments	Example process measured
Direct Detection	LUX, Xenon, LZ	$p/n \ \chi \to p/n \ \chi$
Indirect Detection	AMS, FERMI/LAT	$\chi \chi \to e^+ e^-, p \bar{p}, \gamma \gamma$
Colliders	LHC	$pp \rightarrow \chi \chi + j, Z, \gamma$
Cosmology	WMAP, Planck, Informa	all the possinentary.

DM Simplified Models at LHC

At this point, a theorist will ask two (or more) questions:

1. What kinds of **UV completions** (and related issues) can we study from simplified models?

. . . .

Do I have to worry about anomalies? Mixing with SM particles?

2. Can we **improve** the LHC searches for DM in any way?

- Effect of NLO corrections?
 - Complementarity of LHC and other searches?
 - How comprehensive are LHC DM searches?
 - Can we further automate the computations?

... but you get a factor of 2 improvement in scale uncertainties!

DM production at NLO (QCD)

Also, shapes of distributions can be affected by NLO

corrections

DM production at NLO (QCD)

Effects of NLO merging (FxFx)

Merging effects are relatively small (~ 10%)

DM production at NLO

Tools for NLO (QCD) simp. models

- POWHEG + PS
 (Haisch, Re, Kahlhoefer)
- MCFM (Fox, Williams)

Works great...

but "brute force" implementation. Not very flexible.

- MG5_aMC@NLO
- Flexible framework.
- Easy links to **PS /merging**.
- Easy links to DM tools (MadDM)

DM production at NLO

Tools for NLO (QCD) simp. models

MCFM (For thing that ye have mentation. It is a great than one to Not very fleville

Na5_aMC@NLO

- Flexible framework.
- Easy links to **PS /merging**.
- Easy links to DM tools (MadDM)

DM production at NLO

DM simplified models for <u>s-channel mediators</u> are implemented in the aMC@NLO framework at NLO (QCD) accuracy (and publicly available)

Publication	Mediator (s-ch.)	DM	Interactions
arXiv:1508.05327 (MB , Kramer, Maltoni, Martini, Mawatari, Pellen)	S, PS, V, PV	Dirac, Scalar, CScalar	q, t
arXiv:1508.00564 (Mattelaer,Vryonidou)	S, PS, V, PV	Dirac	b,t (loop induced)
arXiv:1509.05785 (Neubert,	S, PS, V, PV	Dirac, Cscalar	Z
With	h the FeynRules+ enerate the NLO quickly	NLOCT we can UFO models	Norecon

Comprehensive DM studies

Collider Signals

- w/ missing energy
- w/o missing energy

Cosmological Signals

- DM relic density

. . .

- Baryon asymmetry

Astro-physical Signals

- cosmic ray fluxes
- direct detection

. . .

Complex Parameter Spaces

- Scans over N parameters

= Comprehensive DM study

How difficult is it to do this in a generic DM scenario?

$$\mathcal{L}_{t,X}^{Y_0} = -\left(g_t \,\frac{y_t}{\sqrt{2}}\,\bar{t}t + g_X\,\bar{X}X\right)Y_0\,.$$

Four free parameters: g_t, g_X, m_X, m_Y

Arise from UV complete theories?

- Y₀ could be part of an SU(2) doublet
 → 2HDM with a large degree of alignment cos(β α) ~ 0
 [see e.g. Craig et al. '13; Carena et al. '13]
- Y₀ SM singlet

. . .

→ Higgs-Portal model

Additional phenomenological aspects

[see e.g. Kim et al. '08; Baek et al. '11, '14; Lopez-Honorez et al. '12; Khoze et al. '15; Ko, et al. '16]

Plethora of signatures

Credit for slide to Jan Heisig

1605.09242

Example: Top-philic DM simplified model Relic density constraints

Example: Top-philic DM simplified model Relic density constraints

Example: Top-philic DM simplified model Relic density constraints

Example: Top-philic DM simplified model 1605.09242 Relic density constraints \sim $m_X \gtrsim m_Y$: MadDM: Top-philic DM, scalar mediator 10³ 0.5 $m_Y \gtrsim m_X \gtrsim m_t$: 0.0 $m_X = m_t$ -0.5 $X\bar{X} \to Y_0Y_0$ (III)10² -1.0 $X\bar{X} \to t\bar{t}$ (I) m_X [GeV] $\log_{10}(g_X)$ 10^1 -2.5 $m_X \lesssim m_t, m_Y$: 000000 -3.0-3.5 Relic Density, $\frac{\Gamma_Y}{m_V} \leq 0.2$ 10⁰ 🛌 10⁰ $\rightarrow gg$ -4.0 (II)Xoo 10^{1} 10² 10³ m_{Y} [GeV] [Computed with MadDM,] 000 Credit for slide to Jan Heisig 000000

Example: Top-philic DM simplified model 1605.09242 Direct detection bounds

Example: Top-philic DM simplified model Indirect detection bounds

[Fermi-LAT 2015]

- p-wave suppression for all annihilation processes for scalar mediator
- For pseudo-scalar mediator only process XX > YY p-wave suppressed

Jer searches

Final state	Imposed constraint	Reference	Comments
$\mathbf{\not \!\! E}_T + t\bar{t}$	MadAnalysis5 PAD (new)	CMS [1504.03198]	Semileptonic top-antitop decay
$\mathbf{\not \! E}_T + j$	MadAnalysis5 PAD (new)	CMS [1408.3583]	
$\mathbf{\not E}_T + Z$	$\sigma(\not\!\!\!E_T > 150~{\rm GeV}) < 0.85{\rm fb}$	CMS $[1511.09375]$	Leptonic Z -boson decay
$\mathbf{\not \! E}_T + h$	$\sigma(\not\!\!\!E_T>150~{\rm GeV})<3.6{\rm fb}$	ATLAS [1510.06218]	$h \to b \bar{b}$ decay
jj	$\sigma(m_Y = 500 \text{ GeV}) < 10 \text{ pb}$	CMS [1604.08907]	Only when $m_Y > 500 \mathrm{GeV}$
$\gamma\gamma$	$\sigma(m_Y = 150 \text{ GeV}) < 30 \text{ fb}$	CMS $[1506.02301]$	Only when $m_Y > 150 \mathrm{GeV}$
$tar{t}$	$\sigma(m_Y = 400 \text{ GeV}) < 3 \text{ pb}$	ATLAS [1505.07018]	Only when $m_Y > 400 \mathrm{GeV}$
$t\bar{t}t\bar{t}$	$\sigma < 32 \mathrm{fb}$	CMS [1409.7339]	Upper limit on the SM cross section

Combined constraints

1605.09242

Combined constraints

This study is a **proof of principle** that we can automate Comprehensive studies of DM.

Collider searches (NLO accuracy) (MadGraph) + Cosmology (MadDM)+ Astro-Physics (MadDM) + Hypothesis Evaluation (MadAnalysis) + Parameter Scanning (MultiNest)

 10^{2}

 10^1 m_Y [GeV]

$$g_{t,X} = [10^{-4}, \pi]$$

Credit for slide to Jan Heisig

 10^{3}

Thank You!