Vector-like quark phenomenology

Aldo Deandrea Université Lyon 1 & IUF

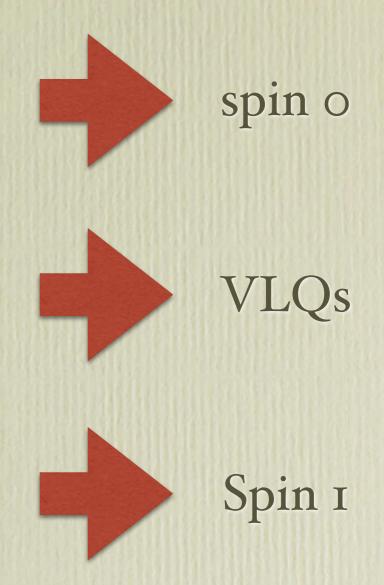
Theorie LHC France - IPNO

Orsay - November 8th 2016

Top quark is special for BSM

- Composite models (technicolor, effective lagrangians like little Higgs, topcolor...):
 - top effective 4 fermion operators
 - vector-like top partners

see Giacomo's talk


- new coloured scalars
- Extra-dimensional models:
 - KK-modes of top and gluons
 - Xdim realisations of composite models

why vector-like quarks?

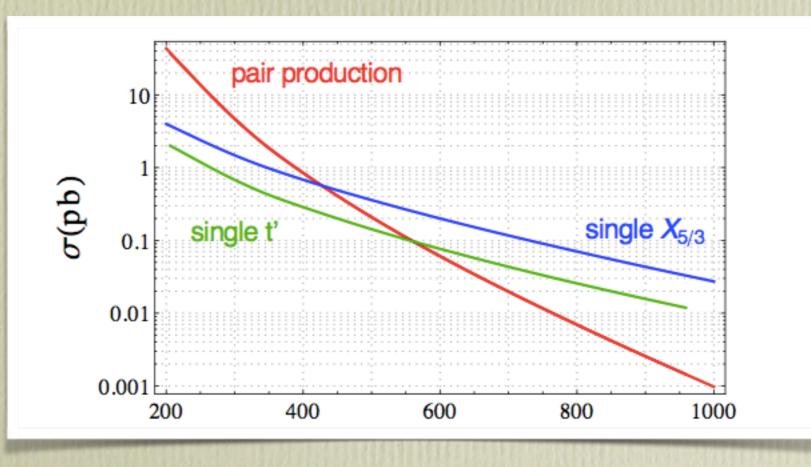
- top partners are expected in many extensions of the SM (composite/Little higgs models, Xdim models)
- they come in complete multiplets (not only singlets)
- in some specific models not too heavy mass scale M (√TeV) and mainly coupling to the 3rd generation
- Present LHC mass bounds \sim 800 GeV
- Mixings bounded by EWPT, flavour...
- In realistic composite models also scalars and vectors are expected.

Example: $SU(4)xSU(6) \rightarrow Sp(4)xSO(6)$

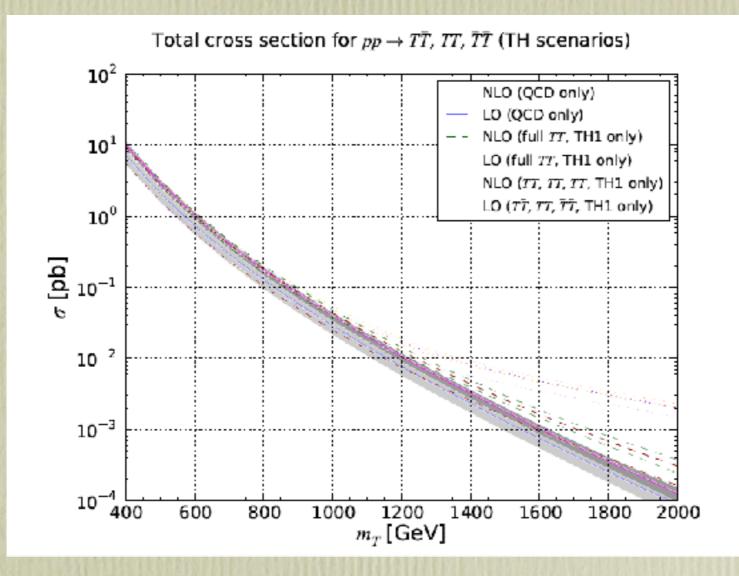
[G (1) GO(0)	
	spin	$SU(4) \times SU(6)$	$Sp(4) \times SO(6)$	names
QQ	0	(6, 1)	(1, 1)	σ
			(5, 1)	π
$\chi\chi$	0	(1, 21)	(1, 1)	σ_c
			(1, 20)	π_c
χQQ	1/2	(6, 6)	(1, 6)	ψ_1^1
			(5, 6)	ψ_1^5
$\chi ar Q ar Q$	1/2	(6, 6)	(1, 6)	ψ_2^1
			(5, 6)	$\psi_2^{\overline{5}}$
$Qar\chi ar Q$	1/2	$(1, \overline{6})$	(1, 6)	ψ_3
$Qar{\chi}ar{Q}$	1/2	$(15, \bar{6})$	(5, 6)	ψ_4^5
			(10, 6)	ψ_4^{10}
$\bar{Q}\sigma^{\mu}Q$	1	(15, 1)	(5, 1)	a
			(10, 1)	ρ
$\bar{\chi}\sigma^{\mu}\chi$	1	(1, 35)	(1, 20)	a_c
			(1, 15)	ρ_c

from 1507.02283

Embeddings in $SU(2)_L \times U(I)_Y$


Vector-like multiplets forming mixed Yukawa terms with the SM quark representations and a SM or SM-like Higgs boson doublet

ψ	$(SU(2)_L, U(1)_Y)$	T_3	Q_{EM}
U	(1, 2/3)	0 + 2/3	
D	(1, -1/3)	1, -1/3) 0 -1	
$\left(X^{8/3}\right)$		+2	+8/3
$X^{5/3}$	$({f 3},5/3)$	+1	+5/3
		0	+2/3
$\left(X^{5/3}\right)$		+1	+5/3
U	(3, 2/3)	0	+2/3
		-1	-1/3
	Steel and the second	+1	+2/3
D	(3, -1/3)	0	-1/3
$\left(Y^{-4/3} \right)$		-1	-4/3


ψ	$(SU(2)_L, U(1)_Y)$	T_3	Q_{EM}
$\left(U \right)$	(2, 1/6)	+1/2	+2/3
$\left(D \right)$		-1/2	-1/3
$\left(X^{5/3}\right)$	(2,7/6)	+1/2	+5/3
		-1/2	+2/3
$\left(\begin{array}{c} D \end{array}\right)$	(2 5/6)	+1/2	-1/3
$\left(Y^{-4/3} \right)$	(2, -5/6)	-1/2	-4/3
$(X^{8/3})$	(4,7/6)	+3/2	+8/3
$X^{5/3}$		+1/2	+5/3
U		-1/2	+2/3
$\left(\begin{array}{c} D \end{array} \right)$		-3/2	-1/3
$\left(X^{5/3} \right)$	(4, 1/6)	+3/2	+5/3
		+1/2	+2/3
	(-,-,-)	-1/2	-1/3
$\left(Y^{-4/3} \right)$		-3/2	-4/3
$\left(\begin{array}{c} U \end{array}\right)$	(4, -5/6)	+3/2	+2/3
		+1/2	-1/3
$Y^{-4/3}$		-1/2	-4/3
$\left(Y^{-7/3} \right)$		-3/2	-7/3

Single vs pair cross-sections

- Reach at LHC substantial and only partially exploited
- Mixings with all the 3 SM generations important (production/decay)
- Single production important with present mass bound at LHC (~800 GeV)

NLO tools and calculations

hep-ph/1610.04622 B.Fuks & H.-S. Shao

Simplest multiplets (and SM quantum numbers)

		SM	Singlets	Doublets	Triplets	
		$\left(\begin{smallmatrix} u \\ d \end{smallmatrix}\right) \left(\begin{smallmatrix} c \\ s \end{smallmatrix}\right) \left(\begin{smallmatrix} t \\ b \end{smallmatrix}\right)$	(t') (b')	$ \begin{pmatrix} x \\ t' \end{pmatrix} \begin{pmatrix} t' \\ b' \end{pmatrix} \begin{pmatrix} b' \\ Y \end{pmatrix} $	$\begin{pmatrix} X \\ t' \\ b' \end{pmatrix} \begin{pmatrix} t' \\ b' \\ Y \end{pmatrix}$	
	$SU(2)_L$	2	1	2	3	
	$U(1)_Y$	$q_L = 1/6$ $u_R = 2/3$ $d_R = -1/3$	2/3 -1/3	1/6 7/6 -5/6	2/3 -1/3	
	\mathcal{L}_Y	$-\frac{\frac{y_{u}^{i}v}{\sqrt{2}}\overline{u}_{L}^{i}u_{R}^{i}}{-\frac{y_{d}^{i}v}{\sqrt{2}}\overline{d}_{L}^{i}V_{CKM}^{i,j}d_{R}^{j}}$	$-\frac{\lambda_{u}^{i}v}{\sqrt{2}}\overline{u}_{L}^{i}U_{R}$ $-\frac{\lambda_{d}^{i}v}{\sqrt{2}}\overline{d}_{L}^{i}D_{R}$	$-\frac{\lambda_{\mu\nu}^{i}}{\sqrt{2}}U_{L}u_{R}^{i}\\-\frac{\lambda_{d\nu}^{i}}{\sqrt{2}}D_{L}d_{R}^{i}$	$-\frac{\lambda_i v}{\sqrt{2}} \bar{u}_L^i U_R \\ -\lambda_i v \bar{d}_L^i D_R$	
	\mathcal{L}_m		$-Mar{\psi}\psi$	(gauge invariant sind		
-	Free parameters		$\begin{array}{c} 4\\ M+3\times\lambda^i \end{array}$	$\begin{vmatrix} 4 \text{ or } 7 \\ M + 3\lambda_u^i + 3\lambda_d^i \end{vmatrix}$	$\overset{4}{M+3\times\lambda^{i}}$	

Simplified Mixing effects (t-T sector only)

- Yukawa coupling generates a mixing between the new state(s) and the SM ones
- Type 1 : singlet and triplets couple to SM L-doublet
 - Singlet $\psi = (1, 2/3) = U$: only a top partner is present
 - triplet ψ = (3, 2/3) = {X, U, D}, the new fermion contains a partner for both top and bottom, plus X with charge 5/3
 - triplet ψ = (3, -1/3) = {U, D, Y}, the new fermions are a partner for both top and bottom, plus Y with charge -4/3

$$\mathcal{L}_{\text{mass}} = -\frac{y_u v}{\sqrt{2}} \bar{u}_L u_R - x \, \bar{u}_L U_R - M \, \bar{U}_L U_R + h.c.$$

$$\begin{pmatrix} \cos \theta_u^L & -\sin \theta_u^L \\ \sin \theta_u^L & \cos \theta_u^L \end{pmatrix} \begin{pmatrix} \frac{y_u v}{\sqrt{2}} & x \\ \sqrt{\sqrt{2}} & M \end{pmatrix} \begin{pmatrix} \cos \theta_u^R & \sin \theta_u^R \\ -\sin \theta_u^R & \cos \theta_u^R \end{pmatrix}$$

Simplified Mixing effects (t-T sector only)

- Type 2 : new doublets couple to SM R-singlet
- SM doublet case $\psi = (2, 1/6) = \{U, D\}$, the vector-like fermions are a top and bottom partners
- non-SM doublets ψ = (2, 7/6) = {X, U}, the vector-like fermions are a top partner and a fermion X with charge 5/3
- non-SM doublets ψ = (2, -5/6) = {D,Y}, the vector-like fermions are a bottom partner and a fermion Y with charge -4/3

$$\mathcal{L}_{\text{mass}} = -\frac{y_u v}{\sqrt{2}} \bar{u}_L u_R - x \bar{U}_L u_R - M \bar{U}_L U_R + h.c.$$
$$\begin{pmatrix} \cos \theta_u^L & -\sin \theta_u^L \\ \sin \theta_u^L & \cos \theta_u^L \end{pmatrix} \begin{pmatrix} \frac{y_u v}{\sqrt{2}} & 0 \\ x & M \end{pmatrix} \begin{pmatrix} \cos \theta_u^R & \sin \theta_u^R \\ -\sin \theta_u^R & \cos \theta_u^R \end{pmatrix}$$

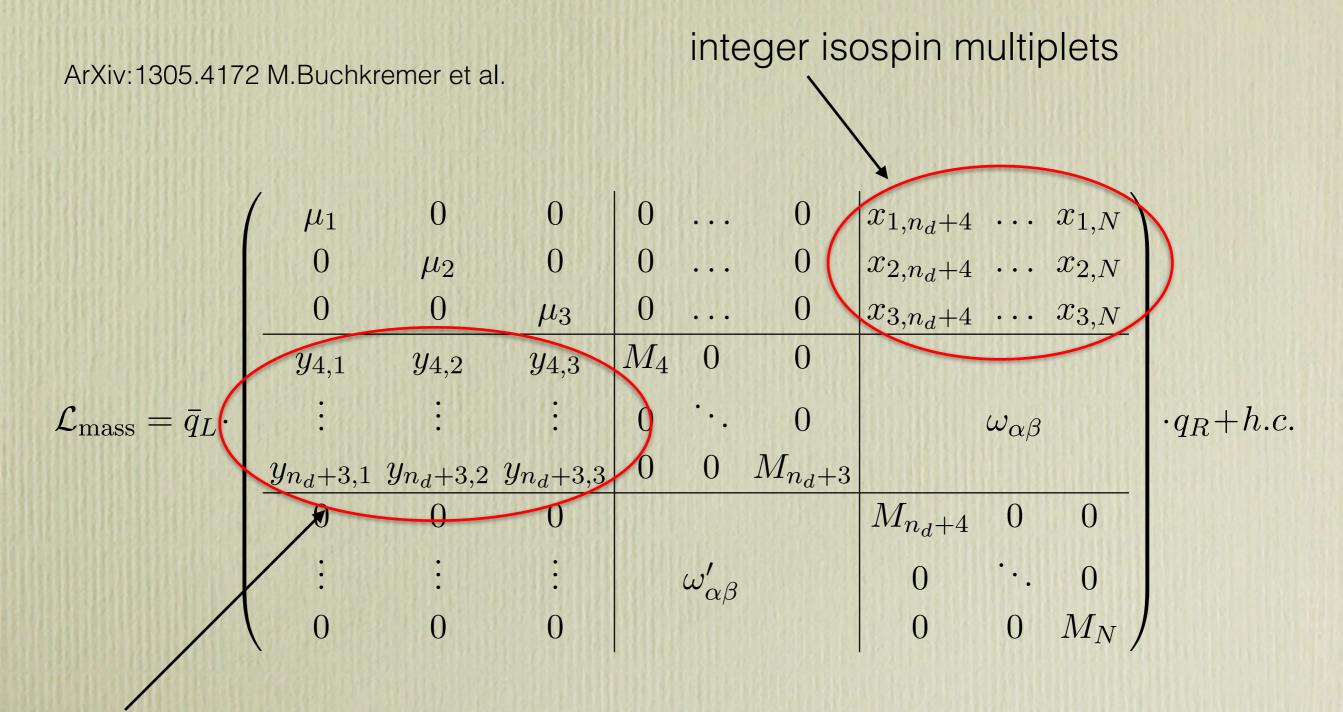
Mixing 1VLQ (doublet) with the 3 SM generations

$$M_{u} = \begin{pmatrix} \tilde{m}_{u} & & \\ & \tilde{m}_{c} & \\ & & \tilde{m}_{t} \\ x_{1} & x_{2} & x_{3} & M \end{pmatrix} = V_{L} \cdot \begin{pmatrix} m_{u} & & \\ & m_{c} & \\ & & m_{t} \\ & & & M \end{pmatrix} \cdot V_{R}^{\dagger}$$

$$V_{L} \implies M_{u} \cdot M_{u}^{\dagger} = \begin{pmatrix} \tilde{m}_{u}^{2} & x_{1}^{*} \tilde{m}_{u}^{2} \\ \tilde{m}_{c}^{2} & x_{2}^{*} \tilde{m}_{c}^{2} \\ & \tilde{m}_{t}^{2} & x_{3} \tilde{m}_{t}^{2} \\ x_{1} \tilde{m}_{u} x_{2} \tilde{m}_{c} x_{3} \tilde{m}_{t} |x_{1}|^{2} + |x_{2}|^{2} + x_{3}^{2} + M^{2} \end{pmatrix} \quad -$$

$$m_q \propto \tilde{m}_q$$

mixing is suppressed by quark masses


mixing in the right sector present also for $\tilde{m}_q \rightarrow 0$

flavour constraints for q_R are relevant

$$V_R \implies M_u^{\dagger} \cdot M_u = \begin{pmatrix} \tilde{m}_u^2 + |x_1|^2 & x_1^* x_2 & x_1^* x_3 & x_1^* M \\ x_2^* x_1 & \tilde{m}_c^2 + |x_2|^2 & x_2^* x_3 & x_2^* M \\ x_3 x_1 & x_3 x_2 & \tilde{m}_t^2 + x_3^2 & x_3 M \\ x_1 M & x_2 M & x_3 M & M^2 \end{pmatrix}$$

11

Mixing with more VL multiplets

semi-integer isospin multiplets

Bounds: weak charge

• Atomic parity violation, weak charge :

$$Q_W = \frac{2c_W}{g} \left[(2Z + N)(g_{ZL}^u + g_{ZR}^u) + (Z + 2N)(g_{ZL}^d + g_{ZR}^d) \right]$$

For Cesium:
$$Q_W(^{133}\text{Cs})|_{exp} = -73.20 \pm 0.35 \qquad Q_W(^{133}\text{Cs})|_{SM} = -73.15 \pm 0.02$$

• at 3 sigmas this implies :

 $\delta Q_W = -(2Z+N)|V_R^{t'u}|^2$

 $|V_R^{t'u}| < 7.8 \times 10^{-2}$

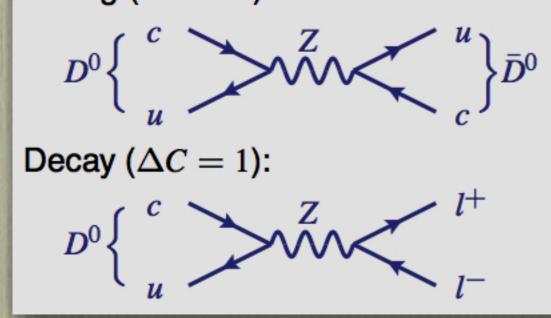
Bounds

Rare top decays (induced by mixing)

 $|V_R^{t't}| \sqrt{|V_R^{t'u}|^2 + |V_R^{t'c}|^2} < 0.08 |V_{tb}|$

• $Z \rightarrow cc$ coupling from LEP

 $g^c_{ZL} = 0.3453 \pm 0.0036$ $g^c_{ZR} = -0.1580 \pm 0.0051$


implies :

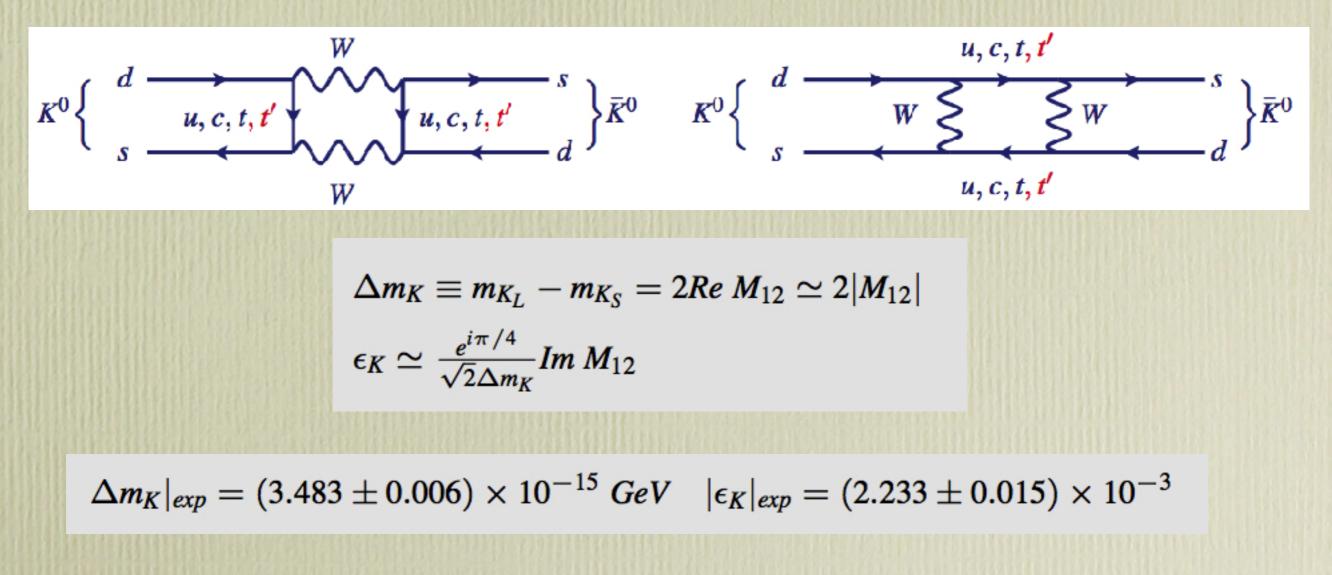
 $|V_R^{t'c}| < 0.2$

Bounds: FCNC (if no b')

• D-Dbar mixing and $D \rightarrow I^+I^-$:

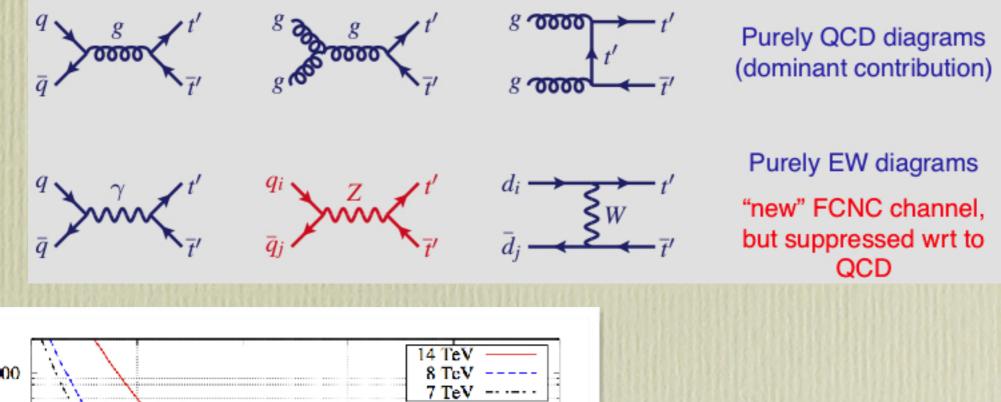
Contribution of the right-handed couplings in the vector-like scenario Mixing ($\Delta C = 2$):

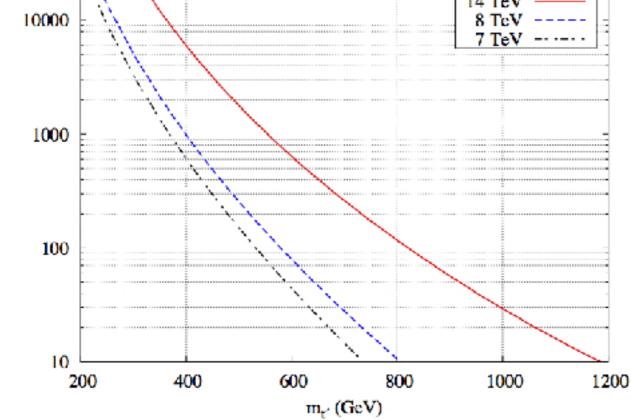
$$\delta x_D = f(m_D, \Gamma_D, m_c, m_Z) (g_{ZR}^{uc})^2$$


$$\delta BR = g(m_D, \Gamma_D, m_l, m_Z) (g_{ZR}^{uc})^2$$

• strongest bound from xD : $x_D = \frac{\Delta m_D}{\Gamma_D} = 0.0100^{+0.0024}_{-0.0026}$

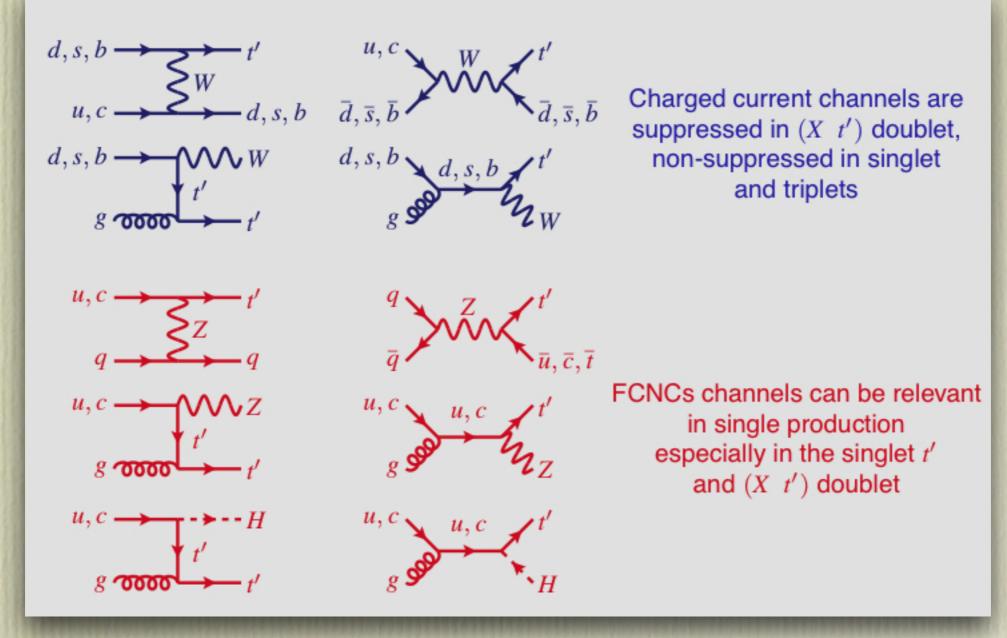
 $(g_{ZR}^{uc})^2 = \frac{\pi\alpha}{c_W^2 s_W^2} |V_R^{t'u}|^2 |V_R^{t'c}|^2 \implies |V_R^{t'u}| |V_R^{t'c}| < 3.2 \times 10^{-4} \quad @3\sigma$


Kaons (and similar for Bs)


• t' in the loop :

corrections to $\boldsymbol{\epsilon}_k$ in the 4% range

Pair production



a (fb)

Pair production for t' of the non-SM doublet $pp \rightarrow t' t @ LHC$

Single production

T' decays

Decay modes never 100% in one channel, in the limit of the equivalence theorem, dictated by the multiplet representation :

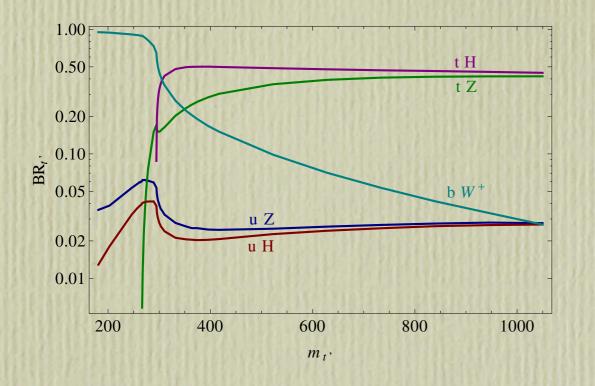
ť	Wb	Zt	ht
Singlet, Triplet Y=2/3	50%	25%	25%
Doublet, Triplet Y=-1/3	0%	50%	50%

T' decays

Different possibilities for t' decay (sin $\theta_R = 0.3$, i.e. mixing with top dominates)

$$pp \rightarrow j (t' \rightarrow t Z) \rightarrow j (t \rightarrow b l^{+} \nu) (Z \rightarrow \nu \bar{\nu}) \rightarrow j b l^{+} \not{E}_{T}$$

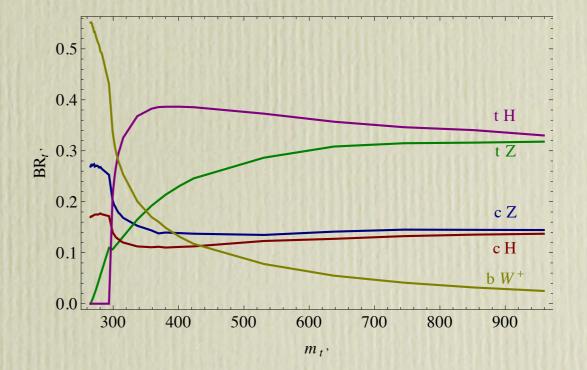
$$\rightarrow j (t \rightarrow b l^{+} \nu) (Z \rightarrow l^{+} l^{-}) \rightarrow j b l^{+} l^{+} l^{-} \not{E}_{T}$$


$$\rightarrow j (t \rightarrow b l^{+} \nu) (Z \rightarrow j j) \rightarrow j j j b l^{+} \not{E}_{T}$$

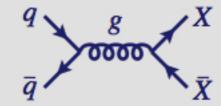
$$pp \rightarrow j (t' \rightarrow t H) \rightarrow j (t \rightarrow b l^{+} \nu) (H \rightarrow b \bar{b}) \rightarrow b \bar{b} b l^{+} \not{E}_{T}$$

$$pp \rightarrow j (t' \rightarrow b W) \rightarrow j b (W \rightarrow l^{+} \nu) \rightarrow j b l^{+} \not{E}_{T}$$

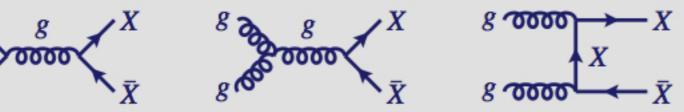
Assuming for example $\kappa = 0.1$ and RL =50% cross-sections are ~500 fb for t' in singlet or non-standard doublet and ~200 fb for t' in standard doublet Production in association with light quarks is ~ 90% See table 8 of Buchkremer et al.1305.4172


T' decays (X^{5/3},T') multiplet

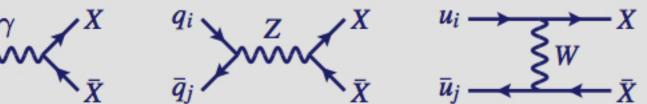
Mixing mostly with top V_R^{41} maximal


Mixing mostly with top V_R⁴² maximal

In all cases T' → bW NOT dominant for allowed masses

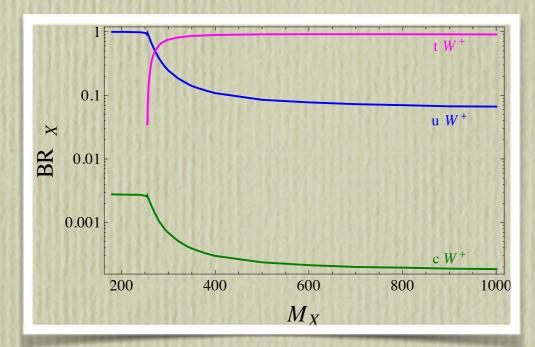


X^{5/3} production

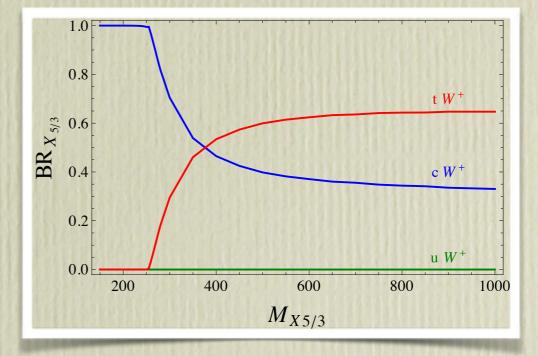

Pair production



Purely QCD diagrams (dominant contribution)


Purely EW diagrams

Single production


Charged current channels are suppressed in doublets, non-suppressed in singlet and triplets

X^{5/3}decays (X^{5/3},T') multiplet

Mixing mostly with top V_R⁴¹ maximal

Mixing mostly with top V_R⁴² maximal

General parameterisation (example with a t')

- T' will in general couple with Wq, Zq, hq
- it is more physical to consider observables (BRs, cross-sections) rather than Lagrangian parameters
- Neglect SM quark masses here (full case in the paper)

$$\begin{split} & \mathcal{B}R(T \to Vq_i) = \underbrace{\frac{\kappa_V^2 (V_{L/R}^{4i}|^2) \Gamma_V^0}{\left(\sum_{j=1}^3 |V_{L/R}^{4j}|^2\right) \left(\sum_{V'=W,Z,H} \kappa_{V'}^2 \Gamma_{V'}^0\right)} \\ & \zeta_i = \frac{|V_{L/R}^{4i}|^2}{\sum_{j=1}^3 |V_{L/R}^{4j}|^2}, \quad \sum_{i=1}^3 \zeta_i = 1, \\ & \xi_V = \frac{\kappa_V^2 \Gamma_V^0}{\sum_{V'=W,Z,H} \kappa_{V'}^2 \Gamma_{V'}^0}, \quad \sum_{V=W,Z,H} \xi_V = 1; \\ & \zeta_{jet} = \zeta_1 + \zeta_2 = 1 - \zeta_3 \end{split}$$

- @ NLO all the couplings of the vector-like quarks to a gauge or a Higgs boson are free parameters
- @ LO only 5 independent parameters, M, ξ_w , ξ_7 , ζ jet, κ
- Choosing multiplet selects $\boldsymbol{\xi}_{W}$, $\boldsymbol{\xi}_{Z}$

Perspectives @LHC 13 TeV

- Current limits with the 7 and 8 TeV data span up to 800-900 GeV in mass for vector like quarks.
- perspectives with 100 fb-1 I.L. at 13 TeV are roughly discovery if σ~ 100 fb for a 1 TeV T' and exclusion with σ~45 fb (see Backovic et al. 1507.06568)
- Search strategy change towards boosted object techniques

Conclusions

- top quark plays a special role in SM and BSM
- top partners are a rich sector to explore to discover or constrain BSM physics, but not only them as VLQ come in multiplets, sometimes with exotic states.
- mixing with the light generations should not be neglected
- NLO calculation are now available and allow more precise study