Introduction

enarios

.

ion

SGluons

Conclusions

Backup

Dirac Gaugino Phenomenology

Mark D. Goodsell

- Motivation for Dirac gauginos
- Bottom-up and top down model building
- Dirac gauginos and the Higgs
- Collider status

Not covered: flavour; any serious discussion of dark matter; many references to others' work.

Introduction Scenarios Higgs Unification SGluons Conclusions Backup Dirac gauginos

- In the MSSM have Majorana gauginos described by one Weyl fermion λ in adjoint rep of each gauge group, mass term $\mathcal{L} \supset -\frac{1}{2}M_{\lambda}\lambda\lambda + h.c.$
- To make give a Dirac mass, add an extra adjoint fermion $\boldsymbol{\chi}$ to give mass term

$$\mathcal{L} \supset -\mathfrak{m}_{D}\chi\lambda + h.c.$$

This also requires a scalar Σ by supersymmetry, fit in an adjoint chiral multiplet (Σ, χ).

Introduction

Backup

Motivation: bottom up

- Dirac gauginos allow the relaxation of LHC search bounds as production of squarks is suppressed since no chirality flip is possible. Gluino production is enhanced a little relative to MSSM, but on other hand is greatly suppressed when $m_{\tilde{q}_{1,2}} \gg m_{\tilde{g}}$.
- They typically suppress processes such as $B \rightarrow s\gamma$ and $\Delta F = 2$ processes.
- They allow for increased naturalness: supersoft masses do not lead to large corrections to stop mass.
- They allow new Higgs couplings, permitting increased Higgs mass \rightarrow compatibility with e.g. light stops.
- There would have been/could still be clear signals from accompanying adjoint scalars if light (this would have been a surprise) → interesting signatures.
- If gauginos are found at the LHC, we will have to determine whether they are Majorana or Dirac in nature, and this is very difficult to do directly: maybe only possible at ILC
- Challenge is to study how the possible spectra affect Higgs properties, because that is what we can measure!
- Also important to look at the other interesting signatures and dark matter constraints.

Some attractive theoretical motivations:

- Nelson-Seiberg Theorem: existence of R symmetry (chiral symmetry under which bosons are also charged: Φ → e^{iαR}Φ Φ, θ → e^{iα}θ, W → e^{2iα}W) required for F-term SUSY breaking
- Many SUSY models preserve R symmetry (e.g. original O'Raifertaigh model)
- Dirac gaugino mass may preserve R, Majorana does not: [Fayet, 78] suggested this as the original way to obtain gaugino masses!
- Alternatively Majorana gaugino mass may simply be too small
- Adjoint multiplets appear in many UV models N = 2 SUSY/N = 1 in d > 4 dimensions, brane moduli in string theory, ...

Introduction

Supersoftness

• A Dirac mass can be written as a holomorphic term:

$$d^{2}\theta 2\sqrt{2}m_{D}\theta^{\alpha} tr(W^{a}_{\alpha}\Sigma^{a}) \supset -m_{D}(\lambda^{a}\chi^{a}) + \sqrt{2}m_{D}\Sigma^{a}D^{a}$$

- Divergent terms only appear in the effective action under a $d^4\theta$ integral.
- Unlike the F-term spurion $\eta=\mu\theta^2$ which is dimensionless, $m_D\theta^\alpha$ has dimension 1/2.
- So counterterms in the effective action would have to have extra powers of Λ, e.g.

$$\int d^4\theta \theta^2 \overline{\theta}^2 \bigg[\frac{|\mathfrak{m}_D|^4}{\Lambda^2} + \frac{\mathfrak{m}_D^2 \mu^* + \overline{\mathfrak{m}}_D^2 \mu}{\Lambda} \bigg] \Phi \overline{\Phi}$$

- As ∧ → ∞ these vanish so all counterterms involving m_D vanish so they only lead to <u>finite quantum corrections</u> → "supersoftness", no logarithmic corrections to e.g. the squark/Higgs masses.
- One important exception is the tadpole, which may have a counterterm \rightarrow logarithmic corrections.

$$\int d^4\theta \theta^2 \overline{\theta}^2 (\mathfrak{m}_D^2 \mu^* + \overline{\mathfrak{m}}_D^2 \mu) (\Phi + \overline{\Phi})$$

RGEs

Since the operator is holomorphic, the RGEs for the Dirac mass itself are given by

$$\beta_{\mathfrak{m}_{D}^{iA}} = \gamma_{j}^{i}\mathfrak{m}_{D}^{jA} + \frac{\beta_{g}}{g}\mathfrak{m}_{D}^{iA}.$$

It does not enter the other RGEs!

However, there is an exception: the tadpole! The Dirac mass term enters explicitly here, so it had to be computed from scratch.

$$\beta_{t^{\mathfrak{a}}}^{(\mathfrak{i})} \equiv X_{S}^{(\mathfrak{i})} + X_{\xi}^{(\mathfrak{i})} + X_{D}^{(\mathfrak{i})}$$

$$\begin{split} (4\pi)^2 X_{\xi}^{(1)} = & 2\sqrt{2}g_Y m_D^{\alpha Y} tr(\mathcal{Y}m^2) \\ (4\pi)^4 X_{\xi}^{(2)} = & 2\sqrt{2}g_Y m_D^{\alpha Y} tr(\mathcal{Y}m^2(4g^2C_2 - Y_2)) \end{split}$$

and

$$(4\pi)^{2} X_{D}^{(1)} = 2 \left[(m_{D}^{2})_{ef} (A^{aef} + MY^{aef}) + Y_{efk} \mu^{ka} (m_{D}^{2})^{ef} \right]$$
$$(4\pi)^{4} X_{D}^{(2)} = 4 (\beta_{m_{D}}^{(1)} / m_{D})_{g}^{f} \left[(m_{D}^{2})_{ef} (A^{aeg} + MY^{aeg}) + Y_{efk} \mu^{ka} (m_{D}^{2})^{eg} \right]$$

Bottom line:

- Tadpole term naturally generated by running, but not dangerous in size (in fact, it is useful phenomenologically): typically $\sim g_Y m_D m^2$ (or smaller if tr($\Im m^2$) = 0 and $\mu = 0$).
- Dirac gaugino masses do not enter the Higgs or stop mass RGEs → increased naturalness: finite contribution to stop mass from gluino of

$$\delta m_{\tilde{t}}^2 \stackrel{DG}{=} \frac{m_{D3}^2 \alpha_s}{2\pi} \log \left(\frac{m_{O_P}}{m_{D3}}\right)^2$$

Compare this to the Majorana case of

$$\delta m_{\tilde{t}}^2 \stackrel{MSSM}{=} \frac{4M_3^2 \alpha_s}{3\pi} \log \left(\frac{\Lambda_{UV}}{M_3}\right)^2$$

Similar conclusions can be drawn for the Higgs mass-squared parameter etc.

Introduction

arios

Ur

ation

SGluons

Conclusions

Backup

D-term masses

For the phenomenology of Dirac gaugino models, a striking property is the new D-term couplings:

$$\int d^2\theta 2\sqrt{2}m_D\theta^{\alpha} \mathsf{tr}(W_{\alpha}\Sigma) \supset -m_D(\lambda_a\chi_a) + \sqrt{2}m_D\Sigma_aD_a$$

They have two main effects:

• Adjoint scalar masses and B-type masses are modified:

$$\begin{split} \mathcal{L} \supset & \frac{1}{2} D_{\alpha}^{2} + \sqrt{2} (m_{D} \Sigma_{\alpha} + \bar{m}_{D} \overline{\Sigma}_{\alpha}) D_{\alpha} \\ \xrightarrow{m_{D} \text{ real}} & - \frac{1}{2} m_{D}^{2} (\Sigma_{\alpha} + \overline{\Sigma}_{\alpha})^{2} \end{split}$$

Trilinear terms modify Higgs mass matrix

$$\frac{1}{\sqrt{2}}g_{Y}\mathfrak{m}_{D}(S+\overline{S})(H_{\mathfrak{u}}^{*}H_{\mathfrak{u}}-H_{\mathfrak{d}}^{*}H_{\mathfrak{d}})\supset -g_{Y}\mathfrak{m}_{D}c_{2\beta}\nu\left(s_{R}\mathfrak{h}\right)$$

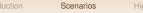
 \rightarrow Bino mass is important for the Higgs mass, cannot be decoupled!

Studying non-(N)MSSM SUSY models was typically hard due to lack of tools - and sometimes theory. However, everything is now in place and progressing fast. On the theory side,

- Increasing numbers of people interested in this class of models (too many to mention), e.g. lepton number as R-symmetry, detailed studies of naturalness, "Goldstone gaugino" scenario, etc.
- We now understand the technical aspects well: RGEs, how the masses are generated, etc.
- We have the tools for general theories: SARAH (Dirac gauginos added in 2012), FeynRules, CalcHEP, MadGraph, MicrOmegas, PYR@TE, ...
- Significant advance in the Higgs mass calculation in general models; now implemented in SARAH [Goodsell, Nickel, Staub '14 and '15], ...

But in terms of LHC analyses:

- A couple of early studies (Martin and Kribs '12; Heikinheimo, Kellerstein, Sanz '11) of collider bounds for simplified models.
- Some work on bounds on sgluons.



Scenarios

Once we add Dirac gaugino masses, there are still many different choices we can make \to many different scenarios, e.g.

- The simplest is to extend the MSSM with adjoint chiral fields S, T, O, one for each gauge group.
- The MSSM breaks R-symmetry in the Higgs sector. An alternative is to add two
 additional SU(2) doublets R_u, R_d which pair with the Higgs but don't get a vev:

 $W_{\text{MRSSM}} \supset \mu_{u}H_{u}R_{u} + \mu_{d}R_{d}H_{d}$

• Neither of these scenarios preserve gauge coupling unification: can add some additional fields to restore natural unification.

We also have many options for the choice of couplings and soft terms:

- Could have the purist "supersoft" scenario where the <u>only</u> soft terms come from the Dirac gaugino mass (in particular, have no A-terms). Then $m_D \gg m_{\tilde{q}}$, the scalar adjoints are $\sim 2m_D$ but the pseudoscalar adjoints are light.
- If we break R-symmetry in the Higgs sector, we have new adjoint couplings that enhance the Higgs mass at tree level.
- We can also use the vev of the singlet to generate μ/B_{μ} as in the NMSSM.

Introduction

Conclusions

Backup

MSSM with Adjoints

Names		Spin 0	Spin 1/2	Spin 1	SU(3), SU(2), U(1) _Y
Quarks	Q u ^c	$\begin{split} \tilde{Q} &= (\tilde{u}_L, \tilde{d}_L) \\ \tilde{u}_L^c \\ \tilde{d}_L^c \end{split}$	$(\mathfrak{u}_L,\mathfrak{d}_L)$ \mathfrak{u}_L^c		(3 , 2 , 1/6) (3 , 1 , -2/3)
(×3 families)	dc	dĽ	uL		(3 , 1 , 1/3)
Leptons (×3 families)	L e ^c	(v _{eL} ,ẽ _L) ẽ _L	(ν _{eL} ,e _L) e ^c _L		(1 , 2 , -1/2) (1 , 1 , 1)
Higgs	H _u H _d	$(H_{\mathfrak{u}}^+, H_{\mathfrak{u}}^0) \\ (H_{\mathfrak{d}}^0, H_{\mathfrak{d}}^-)$	$(\tilde{H}_{u}^{+}, \tilde{H}_{u}^{0}) \\ (\tilde{H}_{d}^{0}, \tilde{H}_{d}^{-})$		(1 , 2 , 1/2) (1 , 2 , -1/2)
Gluons	W _{3α}		$\begin{bmatrix} \lambda_{3\alpha} \\ [\equiv \tilde{g}_{\alpha}] \end{bmatrix}$	g	(8, 1, 0)
W	$W_{2\alpha}$		$[\equiv \tilde{W}^{\lambda_2 \alpha}, \tilde{W}^0]$	₩±, ₩ ⁰	(1 , 3 , 0)
В	$W_{1\alpha}$		$\stackrel{\lambda_{1\alpha}}{[\equiv \tilde{B}]}$	В	(1, 1, 0)
DG-octet	Og	$\begin{bmatrix} O_g \\ [\equiv \Sigma_g] \end{bmatrix}$	$\begin{bmatrix} \chi_g \\ \equiv \tilde{g}' \end{bmatrix}$		(8 , 1 , 0)
DG-triplet	Т	$ \begin{array}{c} \{T^0, T^{\pm}\} \\ [\equiv \{\Sigma_0^{\mathcal{W}}, \Sigma_{\mathcal{W}}^{\pm}\}] \end{array} $	$ \{ \chi^{0}_{T}, \chi^{\pm}_{T} \} \\ [\equiv \{ \tilde{W}'^{\pm}, \tilde{W}'^{0} \}] $		(1,3 , 0)
DG-singlet	s	$\stackrel{S}{[\equiv \Sigma_B]}$	$\begin{bmatrix} \chi_{\tilde{B}} \\ \tilde{B}' \end{bmatrix}$		(1, 1, 0)

ntroduction

Supersymmetric Couplings

Here are the most general renormalisable superpotential couplings:

- SUSY couplings contained in superpotential: $W = W_{Yukawa} + W_{Higgs} + W_{Adjoint}$
- No new Yukawas:

$$\mathcal{W}_{\text{Yukawa}} = Y_{\text{U}}^{ij} \mathbf{Q}_i \cdot \mathbf{H}_u \mathbf{u}_j^c + Y_{\text{D}}^{ij} \mathbf{Q}_i \cdot \mathbf{H}_d \mathbf{d}_j^c + Y_{\text{E}}^{ij} \mathbf{L}_i \cdot \mathbf{H}_d \mathbf{e}_j^c$$

• Two new Higgs couplings (c.f. NMSSM):

$$W_{\text{Higgs}} = \mu \mathbf{H}_u \!\cdot\! \mathbf{H}_d + \lambda_S \mathbf{S} \mathbf{H}_d \!\cdot\! \mathbf{H}_u + 2 \lambda_T \mathbf{H}_d \!\cdot\! \mathbf{T} \mathbf{H}_u$$

• Several possible new Adjoint couplings which violate R:

$$W_{\text{Adjoint}} = L\mathbf{S} + \frac{M_{\text{S}}}{2}\mathbf{S}^{2} + \frac{\kappa_{\text{S}}}{3}\mathbf{S}^{3} + M_{\text{T}}\text{tr}(\mathbf{TT}) + \lambda_{\text{ST}}\text{Str}(\mathbf{TT}) + M_{\text{O}}\text{tr}(\mathbf{OO}) + \lambda_{\text{SO}}\text{Str}(\mathbf{OO}) + \frac{\kappa_{\text{O}}}{3}\text{tr}(\mathbf{OOO}).$$

The Higgs sector of Dirac gaugino models

At tree level the scalar mass matrix is now 4 \times 4! In the basis {h, H, S_R, T_R^0} it is

$$\begin{pmatrix} M_Z^2 + \Delta_h s_{2\beta}^2 & \Delta_h s_{2\beta} c_{2\beta} & \Delta_h s & \Delta_{hT} \\ \Delta_h s_{2\beta} c_{2\beta} & M_A^2 - \Delta_h s_{2\beta}^2 & \Delta_{HS} & \Delta_{HT} \\ \Delta_h s & \Delta_{HS} & \tilde{m}_S^2 & \lambda_S \lambda_T \frac{\nu^2}{2} \\ \Delta_{hT} & \Delta_{HT} & \lambda_S \lambda_T \frac{\nu^2}{2} & \tilde{m}_T^2 \end{pmatrix}$$

where $\Delta_h=\frac{\nu^2}{2}(\lambda_S^2+\lambda_T^2)-M_Z^2.$ In limit of large m_S,m_T , can integrate out adjoint scalars to obtain

$$m_h^2 \simeq M_Z^2 c_{2\beta}^2 + \frac{\nu^2}{2} (\lambda_S^2 + \lambda_T^2) s_{2\beta}^2$$

Can enhance the Higgs mass naturally! And λ_S , λ_T also contribute at loop level.

Note that we have

$$\begin{split} \Delta_{hs} &= \nu [\sqrt{2}\lambda_S\tilde{\mu} - g_Y m_{1D}c_{2\beta}] \quad \Delta_{ht} &= \nu [-\sqrt{2}\lambda_T\tilde{\mu} + g_2 m_{2D}c_{2\beta}] \\ \Delta_{HS} &= g'm_{1D}\nu s_{2\beta}, \qquad \Delta_{HT} &= -gm_{2D}\nu s_{2\beta}, \\ \nu_S &= -\frac{1}{\tilde{m}_{SR}^2} \bigg[t_{S_R} + \frac{\nu}{2}\Delta_{hs} \bigg], \quad \nu_T &= -\frac{1}{\tilde{m}_{TR}^2} \bigg[t_{T_R^0} + \frac{\nu}{2}\Delta_{ht} \bigg]. \end{split}$$

 ν_{T} shifts the W mass, so we have

$$\Delta\rho = \frac{4\nu_T^2}{\nu^2} = (4.2 \pm 2.7) \times 10^{-4} \rightarrow \nu_T \lesssim 4 \text{ GeV}.$$

So the triplet should be heavy (O(TeV)).

Mixing between singlet/triplet and light Higgs also lowers the Higgs mass \rightarrow $m_{DY},\,m_{D2}$ cannot be arbitrarily high without tuning!

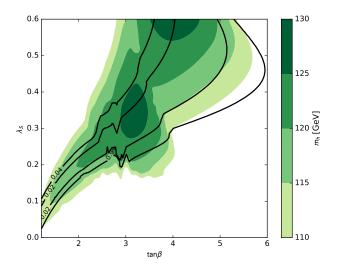
Scenarios Higgs Unification SGluons

Conclusion

Backup

Example

Consider as an example (from my paper 1605.05313 with Benakli, Darmé and Harz) a moderately light singlet



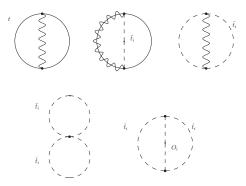
- Since squark A-terms violate R, large A-terms are inconsistent with pure Dirac gauginos.
- If λ_S , λ_T are not large enough at tree level, need significant loop corrections from stops but also S, T

Loop corrections to the Higgs mass are where most progress has been made recently:

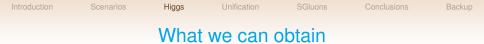
- Can now compute up to two loops for <u>any model</u> in SARAH: full one loop, and at two loops all corrections in the gaugeless limit with zero external momentum.
- Remains much more to be done in particular implementation of our solution to the Goldstone boson catastrophe from 1609.06977 (with J. Braathen).
- Also progress in analytic computations for Dirac gaugino models.

Introduction	Scenarios	Higgs	Unification	SGluons	Conclusions	Backup
			$\alpha_s \alpha_t$			

The $\alpha_s \alpha_t$ corrections are universal to all Dirac gaugino models:



Have calculated anayltic results for these and written a code with J. Braathen and P. Slavich (1606.09213). This is now available in SARAH as options 8 and 9.



We then find:

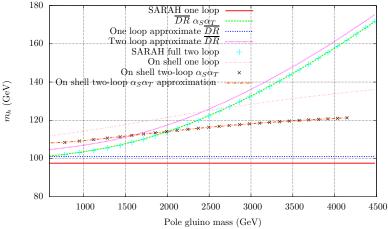
- General two loop corrections to all neutral scalars and pseudoscalars, in both DR and on-shell schemes.
- A simplified analytic formula for the case $m_{\tilde{t}_1} = m_{\tilde{t}_2} = m_{\tilde{g}} = M_S$, $x_i \equiv M_S^2/m_{O_1}^2$, e.g.

$$\begin{split} \Delta m_h^2 &\approx \frac{3 \, m_t^4}{4 \, \pi^2 \nu^2} \left[\ln \frac{M_S^2}{m_t^2} + \hat{X}_t^2 - \frac{\hat{X}_t^4}{12} \right] \\ &\quad + \left(\Delta m_h^2 \right)_{2\ell}^{^{\mathsf{MSSM}^*}} + \, c_{\Phi O}^2 \left(\Delta m_h^2 \right)_{2\ell}^{O_1} \, + \, s_{\Phi O}^2 \left(\Delta m_h^2 \right)_{2\ell}^{O_2} \\ \left(\Delta m_h^2 \right)_{2\ell}^{O_i} &= - \, \frac{\alpha_s \, m_t^4}{\pi^3 \nu^2} \, \left\{ 1 - \ln \frac{M_S^2}{Q^2} + f(x_i) - \hat{X}_t^2 \left[1 - \ln \frac{m_{O_i}^2}{Q^2} + 2 \, x_i \, f(x_i) \right] \right. \\ &\quad \left. + \frac{\hat{X}_t^4}{6} \left[1 + 3 \, x_i \, (1 + \ln x_i) - \ln \frac{m_{O_i}^2}{Q^2} + 6 \, x_i^2 \, f(x_i) \right] \right\} \end{split}$$

• A simple analytic formula for the case $m_{\tilde{g}} \gg m_{\tilde{t}_i}$ and no stop mixing.

Supersoft scenario

As a cautionary note (that is understood in the MSSM too) the supersoft scenario with a $\overline{\text{DR}}$ stop mass calculation is very misleading:



The on-shell calculation is much more reliable here!

• MSSM one-loop beta-function coefficients are $(b_3, b_2, b_1 = (5/3)b_Y) = (3, -1, -11)$, lead to unification of couplings at 10^{16} GeV with perturbative couplings $\alpha_{GUT} \sim 1/24$.

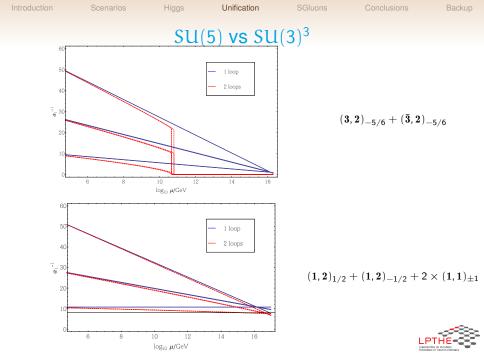
$$\frac{1}{g_{\mathfrak{i}}^{2}(\mu)}=\frac{1}{g_{\mathfrak{i}}^{2}(M_{SUSY})}+\frac{b_{\mathfrak{i}}}{8\pi^{2}}\log\mu/M_{SUSY}$$

- Triumph of the MSSM (modulo two-loop discrepancy...) that we might like to preserve!!
- Adding adjoint fields does (except for S, a singlet): T decreases b_2 by 2, $\mathbf{0}_g$ decreases b_3 by 3

Our choice: add

$$(\mathbf{1},\mathbf{2})_{1/2} + (\mathbf{1},\mathbf{2})_{-1/2} + 2 \times (\mathbf{1},\mathbf{1})_{\pm 1}$$

This could come from $(SU(3))^3$ (would need also four SM singlets).



We can now define the field content of our unified scenario: the MSSM plus

Names		Spin 0	Spin 1/2	Spin 1	(SU(3), SU(2), U(1) _Y)	R-charge
DG-octet	0	0	$\begin{bmatrix} \chi g \\ \equiv \tilde{g}' \end{bmatrix}$		(8 , 1 , 0)	0
DG-triplet	т	{T ⁰ , T [±] }	$ [\equiv \{ \tilde{W}'^{\pm}, \chi_{T}^{\pm} \} \\ [\equiv \{ \tilde{W}'^{\pm}, \tilde{W}'^{0} \}] $		(1 , 3 , 0)	0
DG-singlet	s	S	$\begin{bmatrix} \chi_{S} \\ \equiv B' \end{bmatrix}$		(1, 1, 0)	0
Higgs-like	Ru	Ru	Ř _u Ř _d		(1, 2, -1/2)	1
leptons	R _d	R _d	ℝ _d		(1, 2, 1/2)	1
Fake	$\hat{\mathbf{E}}(\times 2)$	Ê	Ê		(1 , 1 ,1)	0
electrons	$\hat{\mathbf{E}'}(\times 2)$	Ê′	Ê′		(1, 1,-1)	2

Toward a GUT scenario

We can now take one of two directions:

- An extended MRSSM \rightarrow removing μ , μ_R , λ_S , λ_T and related couplings, where an R-symmetry is preserved by the Higgs sector.
- Charge the new fields under lepton number, so that we have new heavy vector-like leptons and sleptons. The superpotential and adjoint soft terms become

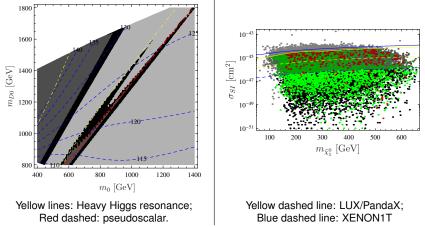
$$\begin{split} \mathcal{W} \supset (\mu + \lambda_S S) \mathcal{H}_d \mathcal{H}_u + 2\lambda_T \mathcal{H}_d T \mathcal{H}_u \\ &+ (\mu_R + \lambda_{SR} S) \mathcal{R}_u \mathcal{R}_d + 2\lambda_{TR} \mathcal{R}_u T \mathcal{R}_d + (\mu_{\hat{E}\,ij} + \lambda_{SEij} S) \hat{E}_i \hat{\tilde{E}}_j \\ &+ Y_{\hat{E}i} \mathcal{R}_u \mathcal{H}_d \hat{E}_i + Y_{\hat{E}i} \mathcal{R}_d \mathcal{H}_u \hat{\tilde{E}}_i \\ &+ Y_{LFV}^{ij} \mathcal{L}_i \cdot \mathcal{H}_d \hat{E}_j + Y_{EFV}^j \mathcal{R}_u \mathcal{H}_d \mathcal{E}_j \\ -\Delta \mathcal{L}_{adjoints}^{scalar \ soft} = m_S^2 |S|^2 + \frac{1}{2} \mathcal{B}_S (S^2 + h.c.) + 2m_T^2 tr(T^{\dagger}T) + (\mathcal{B}_T tr(TT) + h.c.) \\ &+ 2m_O^2 tr(O^{\dagger}O) + (\mathcal{B}_O tr(OO) + h.c.) \\ &+ [T_S S \mathcal{H}_u \cdot \mathcal{H}_d + 2T_T \mathcal{H}_d \cdot T \mathcal{H}_u + \frac{1}{3} \kappa \mathcal{A}_\kappa S^3 + t_S S + h.c.] \\ &+ [T_{SO} S tr(O^2) + T_{ST} S tr(T^2) + \frac{1}{3} T_O tr(O^3) + h.c.] \end{split}$$

Introduction Scenarios Higgs Unification SGluons Conclusions Backup The C in CMDGSSM

We can now specify a minimal set of boundary conditions at the GUT scale:

- As in the CMSSM/mSUGRA, we have m_0 , tan β but instead of $m_{1/2}$ we have m_D . We set $A_0 = 0$ due to SUSY preserving R-symmetry.
- We also choose to take non-universal Higgs masses, and so specify μ, B_μ.
- Since we have two new tadpole conditions from v_S , v_T we specify m_{S0} (singlet scalar mass) and m_{T0} (triplet scalar mass) at the GUT scale. We set the octet scalar mass equal to the triplets, and take $B_T = B_S = B_O = 0$ for minimality.
- We have the Yukawa couplings $Y_{\hat{E}i}^{}, Y_{\hat{E}i}^{}, Y_{LFV}^{ij}, Y_{EFV}^{j}$ which are equivalent to lepton Yukawas; they are constrained to be ≤ 0.01 and so irrelevant for spectrum-generator purposes.
- We have a choice of μ_R, μ_E → can either adjust for precision gauge unification; set to be equal to the Higgs mu; set at convenient values. The Higgs mass and coloured sparticle spectrum is largely independent of this choice.
- We have a choice of couplings λ_S , λ_T , λ_{SR} , λ_{TR} , λ_{SEij} : can take N = 2 values, or $(SU(3))^3$ values, or choose freely.

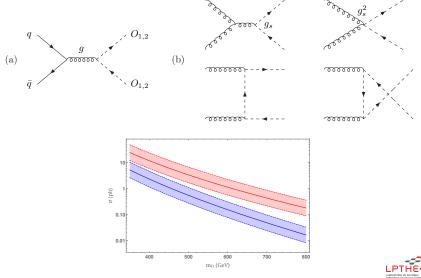
From 1507.01010 with Krauss, Müller, Porod, Staub. Taking tan $\beta = 6$, B_O = -1.2×10^6 GeV, $\lambda_S = 0.15$, $\lambda_T = 0.52$ at low scale:



- In models with Dirac gauginos, we also have the scalar octet superpartners, the sgluons O.
- In typical explicit models (e.g. gauge mediation) the scalars are potentially the heaviest particles in the theory, but the pseudoscalar can be arbitrarily light!
- However, the scalar could be light if B_O is large \rightarrow they can have very interesting phenomenology
- Current bounds are surprisingly weak, below a TeV.

Octet tree couplings

The octet scalars have the usual gauge couplings and so can be produced in pairs at tree level:



Introduction Scenarios Higgs Unification SGluons Conclusions Backup Tree level decays

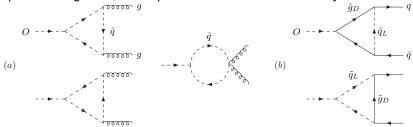
They have trilinear couplings with the squarks and gauginos

$$\begin{split} \mathcal{L}_{D\,i\,r\,a\,c} &= -\int d^2\theta \frac{m_D}{4\sqrt{2}t^2} \overline{D}^2 D^\alpha (X^\dagger X) W^\alpha_\alpha \mathbf{0}^\alpha \supset \sqrt{2} m_D \left(O^\alpha + O^{\alpha *} \right) D^\alpha_c \,, \\ & \to - 2g_s \, m_D \, T^\alpha_{xy} \, \sum_{\tilde{q}_L, \tilde{q}_R} \left(\tilde{q}^*_{L\,x\,i} \, \tilde{q}_{L\,y\,i} - \tilde{u}^*_{R\,x\,i} \, \tilde{u}_{R\,y\,i} - \tilde{a}^*_{R\,x\,i} \, \tilde{d}_{R\,y\,i} \right) \left(\cos(\frac{\Phi_O}{2}) O^\alpha_1 + \sin(\frac{\Phi_O}{2}) O^\alpha_2 \right) \\ \mathcal{L}_{G\,a\,u\,g\,e} \, \supset & \mathrm{i} f^{\alpha\,b\,c} \, \overline{O}^b \, \lambda^\alpha \chi^c + \mathrm{h.c.} \end{split}$$

These lead to rapid decays if the squarks or gluinos are ligher than half the octet mass \rightarrow but this would mean rather heavy octets anyway.

Introduction Scenarios Higgs Unification SGluons Conclusions Backup Octet loop couplings

More interestingly, the above generate couplings at one loop with the quarks and gluons, which provide the conventional decay modes:



• The widths to quarks are parametrised by

$$\mathcal{L} \supset c_{1\overline{t}t}\overline{t}O_{1}t + c_{2\overline{t}t}i\overline{t}O_{2}\gamma_{5}t,$$

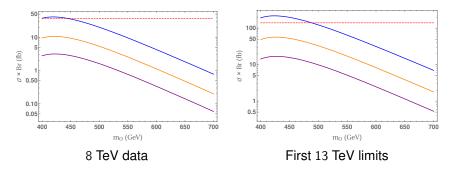
- i.e. they split into scalar and pseudoscalar.
- The widths to gluons are given by

$$\Gamma(O_1 \to gg) = \frac{5\alpha_s^3}{192\pi^2} \frac{m_{D3}^2}{M_{O_1}} \cos^2(\frac{\Phi_O}{2}) |\lambda_{g_1}|^2, \quad \Gamma(O_2 \to gg) = \frac{5\alpha_s^3}{192\pi^2} \frac{m_{D3}^2}{M_{O_2}} \sin^2(\frac{\Phi_O}{2}) |\lambda_{g_2}|^2.$$

- Pseudoscalars do not decay to gluons they only decay to tops \rightarrow four top events (as suggested in 1501.07580) rule them out for $m_O\lesssim$ 880 GeV.
- Scalars can still be light

Rough four-top limits on sgluons

For squarks \sim TeV and gluinos of 2.5 (top) 3, 3.5 (bottom) TeV, rough limits from four-top events are:



These should be properly redone with recasting and new data ...

Introduction

narios

Ur

Goldstino couplings with Dirac gauginos

Recall that the operator for the Dirac gaugino mass is a holomorphic operator:

$$\int d^2\theta 2\sqrt{2}m_D\theta^{\alpha} \text{tr}(W_{\alpha}\Sigma) \rightarrow -\frac{m_D}{4\sqrt{2}f^2} \int d^2\theta \,\overline{D}^2 D^{\alpha}(X^{\dagger}X) \,W^{\alpha}_{\alpha}\Sigma^{\alpha}$$

By extending X from a spurion to include (now a proto-)goldstino ψ_X , we can write down all of the couplings. Up to second order in ψ_X we have:

$$\begin{split} \mathcal{L}_{D\,i\,r\,\alpha\,c} &= -\,m_D\,\lambda\chi + 2|m_D|DS_R + \frac{|m_D|}{f^2} \bigg[-\,iDS_R\,(\partial_\mu\psi_X\,\sigma^\mu\overline\psi_X - \psi_X\,\sigma^\mu\partial_\mu\overline\psi_X) \\ &\quad + \frac{1}{2}S_I\,F_{\mu\nu}\,\varepsilon^{\mu\nu\rho\lambda}\,(\psi_X\,\sigma_\lambda\partial_\rho\overline\psi_X - \overline\psi_X\overline\sigma_\lambda\partial_\rho\psi_X) + S_R\,F_{\mu\nu}\,(\psi_X\,\sigma^\mu\partial^\nu\overline\psi_X - \overline\psi_X\overline\sigma^\mu\partial^\nu\psi_X) \bigg] \\ &\quad + \bigg[\frac{m_D}{f} \bigg(-\psi_X\lambda\,F_S - Si\lambda^\alpha\sigma^\mu_{\alpha\,\dot{\beta}}\,\partial_\mu\overline\psi^{\dot{\beta}}_X \\ &\quad -\,iS\psi^\alpha_X\sigma^\mu_{\alpha\,\dot{\alpha}}\,D_\mu\overline\lambda^{\dot{\alpha}} + \frac{1}{\sqrt{2}}\psi_X\chi\,D - \frac{i}{2\sqrt{2}}\psi^\alpha_X(\sigma^\mu\overline\sigma^\nu)^\beta_\alpha F_{\mu\nu\chi\beta} \bigg) \\ &\quad + \frac{im_D}{f^2} \bigg((\chi\sigma^\mu\partial_\mu\overline\psi_X)\,\psi_X\lambda - (\chi\partial_\mu\psi_X)\,\lambda\sigma^\mu\overline\psi_X \bigg) + h.c. \bigg] \,. \end{split}$$

From these generic couplings, we have – in principle – everything we need for phenomenological studies.

Introduction Scenarios Higgs Unification SGluons Conclusions Backup Observations

- (a) The sgoldstino does not enter at second order.
- (b) A vacuum expectation value for the adjoint scalar $v_S \equiv \langle S_R \rangle$ induces kinetic mixing between the goldstino and the gaugino

$$\mathcal{L} \supset -\frac{\sqrt{2}m_D\nu_S}{f}\bigg[i\lambda\sigma^\mu\partial_\mu\overline{\psi}_X+i\psi_X\sigma^\mu D_\mu\overline{\lambda}\bigg].$$

(c) The Dirac operator contains a coupling of two goldstinos to a gauge boson and the corresponding adjoint scalar. For a light enough scalar, this brings phenomenological signatures that are absent in the Majorana case – and therefore potentially interesting phenomenology.

Gravitinos have been the subject of much experimental interest, involving one of two approaches:

- 1. Consider all supersymmetric particles to be heavy and integrate them out, leaving only the SM fields and the gravitino. Place limits on \sqrt{f} from the resulting higher-dimensional operators.
- 2. Make assumptions about the spectrum of superpartners and place limits on \sqrt{f} as a function of their masses.

Approach (1) is dubious: current limit has $\sqrt{F} > 240$ GeV from monophoton searches at LEP, makes no sense given latest superparticle bounds.

Introduction

narios

U

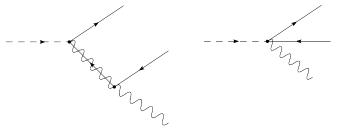
Octet goldstino decays

Now let us consider the new, goldstino, decay channels:

• If the octet is heavier than the gluino, then it will decay rapidly to that:

$$\Gamma(O_{i} \to \tilde{g}G) = \frac{(M_{O_{i}}^{2} - m_{D}^{2})^{4}}{32\pi f^{2}M_{O_{i}}^{3}}$$

 If instead the gluino and squarks are heavy, then it can decay to a gluon and two goldstini via O → GGg and O → Gg̃ → GGg:



Octet goldstino couplings

These processes involve highly non-renormalisable operators: •

$$\mathcal{L}_{OGGg} = \frac{m_D}{f} \partial^{\mu} (G\sigma^{\nu}\overline{G}) G^{a}_{\mu\nu} O^{a}_{1} + \frac{m_D}{2f} \varepsilon^{\mu\nu\rho\lambda} \partial_{\rho} (G\sigma_{\lambda}\overline{G}) G^{a}_{\mu\nu} O^{a}_{2},$$

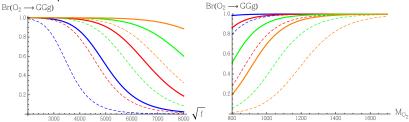
Naively this looks like the decay rate should increase as m_D increases! However, we also have the couplings for the other process:

$$\begin{split} \mathcal{L} \supset & \left(\frac{m_D}{\sqrt{2} f} G \sigma^{\mu\nu} \chi^{\alpha} G^{\alpha}_{\mu\nu} + \frac{i}{\sqrt{2} f} M^2_{O_2} O^{\alpha}_2 G \chi^{\alpha} - \frac{1}{\sqrt{2} f} (M^2_{O_1} - 2m^2_D) O^{\alpha}_1 G \chi^{\alpha} + \text{h.c} \right. \\ & \left. + \frac{i m_D}{\sqrt{2} f} \partial_{\mu} O_1 (G \sigma^{\mu} \overline{\lambda} - \lambda \sigma^{\mu} \overline{G}) + \frac{m_D}{\sqrt{2} f} \partial_{\mu} O_2 (\lambda \sigma^{\mu} \overline{G} + G \sigma^{\mu} \overline{\lambda}) \right. \end{split}$$

They actually interfere so that m_D can decouple; we find ($y\equiv \frac{M^2_{O_1}}{m^2_D})$

$$\begin{split} \Gamma(O_i \to \tilde{g}G) &= \frac{(M_{O_i}^2 - m_D^2)^4}{32\pi f^2 M_{O_i}^3}, \\ g(y) &\equiv \frac{60\,(3-y)\,(1-y)^3\log{(1-y)}}{y^5} + \frac{6y^4 - 155y^3 + 480y^2 - 510y + 180}{y^4} \\ &= \frac{2}{7}y^2 + \frac{3}{14}y^3 + \frac{1}{7}y^4 + ... \\ g(1) &= 1. \end{split}$$

So then we may have regions of parameter space where the goldstino decays of the octet are important:



Full lines are drawn for $\delta \tilde{m} = M_Z = 90$ GeV and dotted lines for $\delta \tilde{m} = 180$ GeV. Also, we have taken $m_{\tilde{g}} = 1.7$ TeV and $m_{\tilde{q}} = 1.5$ TeV. Left plot: (Blue, Red, Green, Orange): $M_{O_2} = (0.8$ TeV, 1 TeV, 1.2 TeV, 1.4 TeV). Right plot: (Blue, Red, Green, Orange): $\sqrt{f} = (3$ TeV, 4 TeV, 5 TeV, 6 TeV).



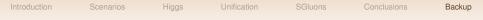
Conventional searches for low-scale SUSY

 The standard search channel for low-scale SUSY-breaking is monojet/monophoton events:

 $\begin{array}{l} g+g \rightarrow G+G+g\\ g+q \rightarrow G+G+q\\ q+\overline{q} \rightarrow G+G+\gamma/g \end{array} \tag{1}$

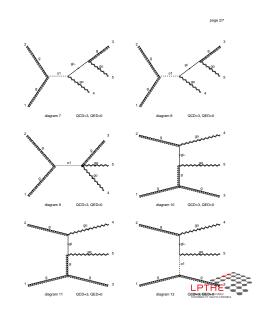
- As I mentioned earlier, either we integrate out all of the SUSY particles and look at the model-independent effective operators à la Brignole, Feruglio, Mangano, Zwirner → does not matter whether gluinos are Dirac or Majorana, but unfortunately the bounds are too weak to be consistent.
- ... or we need to revist the standard Majorana case.
- Or instead: the theory with light octets is an interesting alternative.

- Dirac gauginos have many advantages and remain an attractive reason for TeV-scale SUSY to still be hiding.
- The tools to study them are now available.
- The main thing missing now is detailed collider studies.
- But also many more possibilities for model scenarios.



Octet scalar monojet events

- There are many diagrams which contribute to these processes, but they are dominated at LHC by gluon fusion.
- Must include the full effective theory of scalar octet, gluino and goldstino.
- Crucially depends on the single octet production process via the loop-induced coupling.



- As an illustration and precursor to a full study, we have implemented the model in Feynrules and then MadGraph and CalcHEP.
- Calculated cross-sections at LHC13 for goldstino events when one octet scalar is light as a function of the octet scalar mass, with the total double octet production cross-section given as reference.
- Events where two sgluons are produced and at least one decays to goldstinos (as opposed to two jets) are labelled $O_1 \rightarrow j \overline{GG}$ and $O_2 \rightarrow j \overline{GG}$.
- $\sqrt{f} =$ 7.5 TeV was chosen since then $m_{\tilde{q}} \sim m_{\tilde{g}} \sim 0.2\sqrt{f} \sim 1.5$ TeV, with the squark masses varying from a common SUSY-breaking mass as

$$\sqrt{\mathfrak{m}_{\tilde{q}}^2\pm rac{1}{2}M_Z^2}$$
, $\sqrt{\mathfrak{m}_{\tilde{q}}^2\pm 2M_Z^2}$.

- Monojet events are labelled $p \ p \rightarrow j \ G \ G$; for these, two different, lower, values of \sqrt{f} are shown, and the spectrum of other sparticles has the first two generations of squarks and the right-handed squarks of the third generation at 2 TeV, with left-handed third-generation squarks at 755 GeV.
- In all cases the gluino mass was fixed at 1500 GeV.

Introduction Scenarios Higgs Unification SGluons Conclusions Backup

Projected cross-sections

