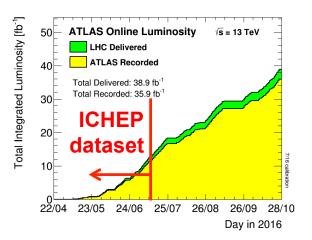


THE QUEST FOR SUSY @ LHC


Loïc Valéry IFAE Barcelona Ivalery@cern.ch

Scope of this talk (I)

- **18 ATLAS** SUSY conference notes since August
- 19 CMS SUSY conference notes since August
- But only 20 minutes today ... ☺
- So hard choices made to fit in today's slot
 - 8 analyses presented ! Some others flashed

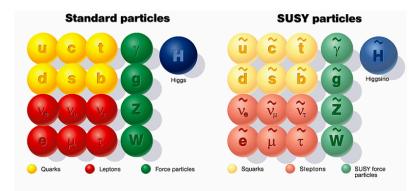
- Talk focusing on 4 main topics: different eras of LHC Run 2
 - Strong production searches → very early/early searches
 - Third generation (focusing on stop searches) → early searches

 - RPV SUSY → preliminary searches

Scope of this talk (II)

Today's highlights

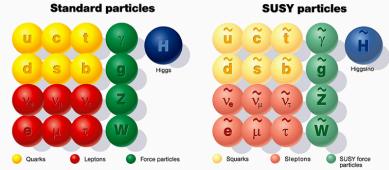
- Studied models
 - Effective, simplified, ...
- Considered experimental signatures
 - All possible number of leptons: 0 to \geq 3-leptons
- Main recent results
 - Comparisons of sensitivities whenever possible


Scope of this talk (II)

- Today's highlights
 - Studied models
 - Effective, simplified, ...
 - Considered experimental signatures
 - All possible number of leptons: 0 to \geq 3-leptons
 - Main recent results
 - Comparisons of sensitivities whenever possible

SUSY

- SUSY = one of the most promising BSM theories reachable @ LHC
 - Solves/proposes to solve many issues of the SM
 - Naturalness, dark matter, ...
 - Rich phenomenology

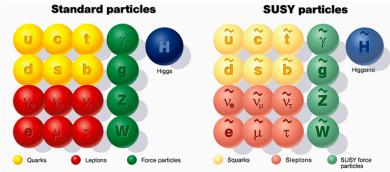


۲

. . .

SUSY

- SUSY = one of the most promising BSM theories reachable @ LHC
 - Solves/proposes to solve many issues of the SM
 - Naturalness, dark matter, ...
 - Rich phenomenology
- But, many free parameters in the models
 - Mass spectrum to be determined
 - Couplings to be observed



۰

SUSY

- SUSY = one of the most promising BSM theories reachable @ LHC
 - Solves/proposes to solve many issues of the SM
 - Naturalness, dark matter, ...
 - Rich phenomenology
- But, many free parameters in the models
 - Mass spectrum to be determined
 - Couplings to be observed

- Extremely hard to perform a full scan of the parameter space ...
 - Mostly use (very) simplified models depending on O(2) parameters

Quest for SUSY @ LHC

- Mainly looked for by ATLAS and CMS
 - Hard to reinvent the wheel
 - Both experiments use close recipes:
 - Signatures, background modeling, systematic treatment, ...
 - But with some noticeable differences in strategy
- In particular: use of shapes !
 - CMS heavily uses "shapes" or multi-channel approaches
 - Pros
 - Improved sensitivity (more information learnt from data/different phase space corners)
 - Cons
 - Depends on the *signal shape* ... But is it known ?
 - Background estimation needs to be more refined (to account for shape effects)
 - ATLAS mostly using single-bin cut-and-count analyses
 - Pros
 - Easier to *recast* (only event count)
 - Only background *normalisation* to be corrected for
 - Cons
 - Slightly worse sensitivity

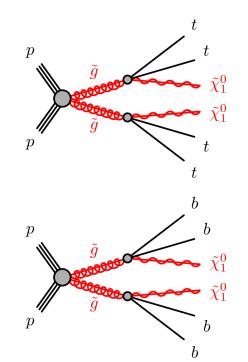
Outline

- Strong production : squarks and gluinos
- **3rd generation**: the top squark searches
- Electroweak SUSY
- R-parity violating SUSY

SQUARKS AND GLUINOS

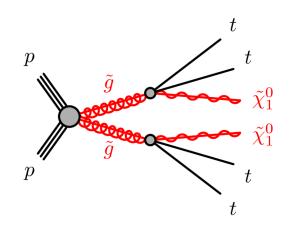
- SUS-16-014
- SUS-16-015
- SUS-16-016
- SUS-16-016
- SUS-16-020
- ATLAS-CONF-2016-052 SUS-16-022 ATLAS-CONF-2016-037 SUS-16-030

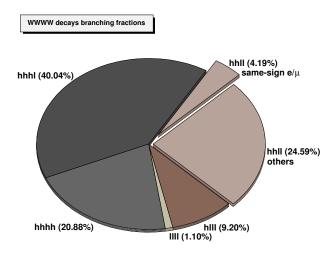
Squark and gluino productions

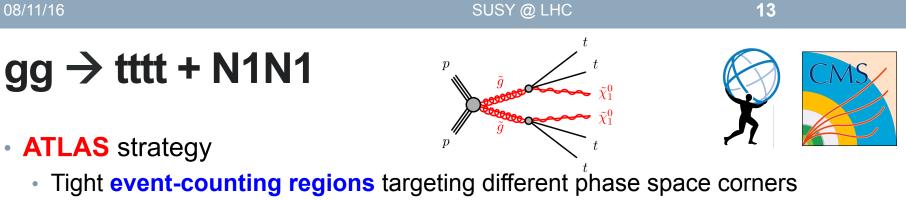


- Ideal target for the early Run 2
 - Large cross-section increase w.r.t. 8 TeV
 - Largely dominating w.r.t. EW for reasonably heavy squarks/gluinos
 - ➔ No need for very high lumi to be sensitive
- Two main simplified models considered

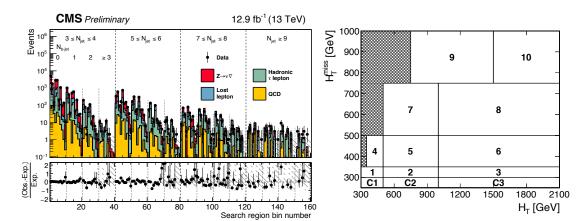
• pp \rightarrow tttt + N1N1

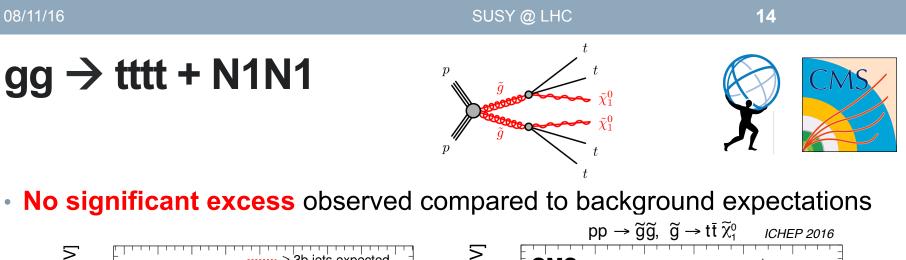


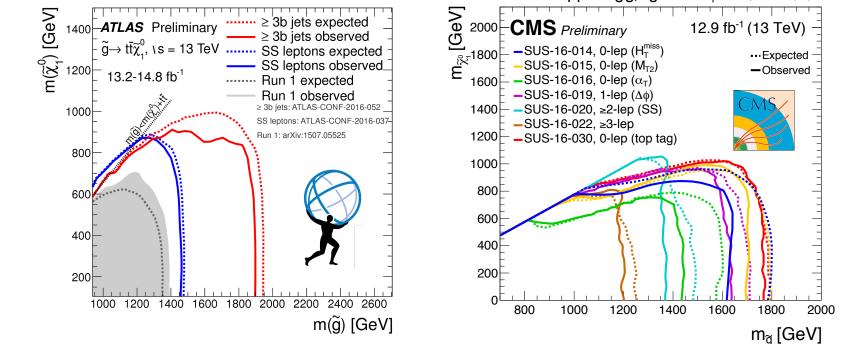



$gg \rightarrow tttt + N1N1$

- Covered in both ATLAS and CMS
 - 4 top quarks in the final state
 - Very spectacular final states !!!
 - 0 lepton → large Njets (up to 12 hard jets)
 - 1 lepton → large BR and clear signature
 - ≥2L → particularly interesting in same-sign
- Signature always contains:
 - Many jets
 - Large MET
 - Many b-jets
- Dominating backgrounds sources
 - ttbar+jets / V+jets via MC or via instrumental background (fake leptons, lost leptons, ...)

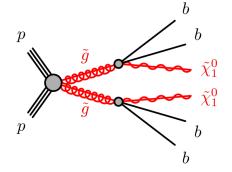






- Control regions (CR) defined to normalize backgrounds
- Background validated in validation regions (VR)
- Relies on kinematic/event variables:
 - m_{eff} , N_{jets} , N_{b-jets} , MET, $N_{leptons}$, $m_T(b,MET)$, top-tagging, ...
- CMS strategy
 - Large number of non-overlaping SRs (160 regions in 0L) combined altogether
 - CRs defined to estimate each background source individually
 - Closure tests performed to validate backgrounds prediction

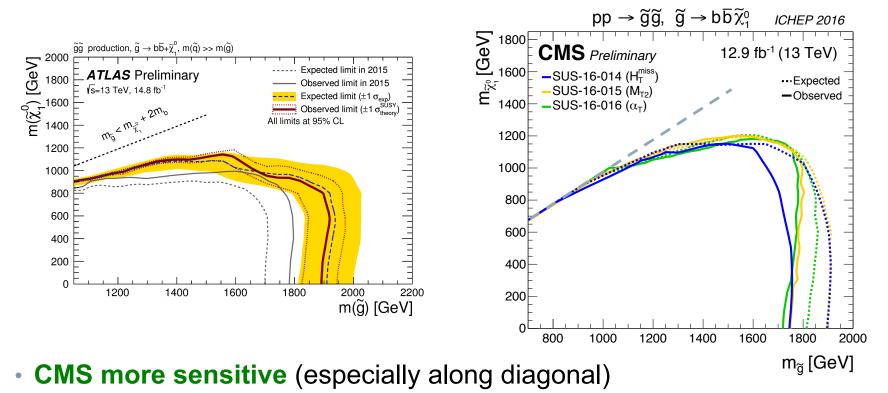
χ₀



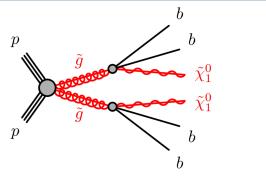
- Each analysis sensitive in different corners
 - same-sign more sensitive along diagonal, 0/1-lep for massless neutralinos
- ATLAS more sensitive due to 0L/1L channels statistical combination

$gg \rightarrow bbbb + N1N1$

- Only accessible in **0L channel**
 - Multiple b-jets and high MET
 - Analysis strategies very close to previous one



CMS


Only accessible in **0L channel**

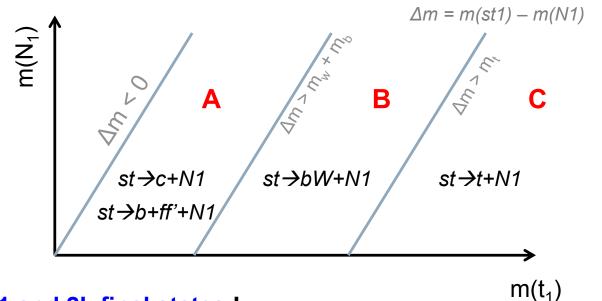
 $gg \rightarrow bbbb + N1N1$

- Multiple b-jets and high MET
- Analysis strategies very close to previous one

Thanks to multi-bin combination → recover SR inefficiencies in this regime

3RD GENERATION

... but only stop for today ...

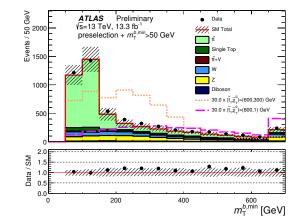

ATLAS-CONF-2016-077SUS-16-029ATLAS-CONF-2016-050SUS-16-016ATLAS-CONF-2016-076SUS-16-027

18

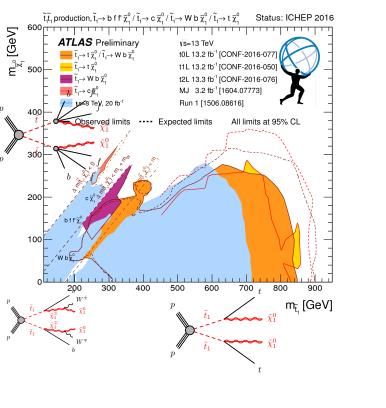
3rd generation squark searches (I)

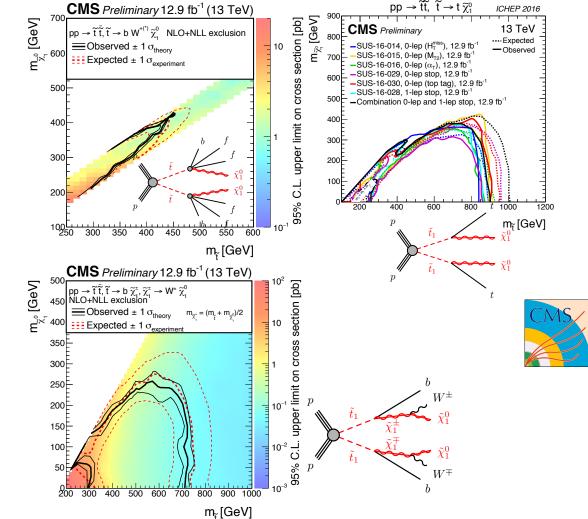
- Simplified models to depend on 2 parameters only
 - Top squark mass
 - Neutralino mass
- Different mass splitings •
 - = different decay types
 - = different experimental signatures

- Can be searched for in 0, 1 and 2L final states !
- **ICHEP** phase space coverage •
 - CMS: 3 regions
 - ATLAS: only 2 (intermediate and high spliting)
- No dramatic change in **analysis strategies** •


3rd generation squark searches (II)

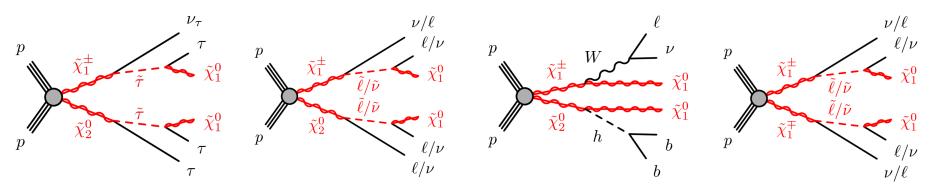
Sensitivity to different kinematics: same problematic as for tttt/bbbb+N1


High Δm searches


- High top p_{τ} : top/W tagging algorithms (jet reclustering, substructure-based, ...)
- Use of m_T^{b,min} (supresses ttbar+jets)
- Intermediate/low Δm
 - Recursive Jigsaw (ISR-tagging) (ATLAS)
 - Anti-b-tagging (ISR-tagging) (CMS)
 - Lower jet multiplicity requirement
- Same as previous section
 - ATLAS: few overlapping regions
 - CMS: full multi-channels combination
- Can be searched for in 0, 1 and 2L final states !
- CMS covering 3 regions with ICHEP dataset (ATLAS only 2)

3rd generation squark searches (III)

- Some slight excesses (~2-3σ) in ATLAS weaker in CMS
- Senstitivity close between both experiments

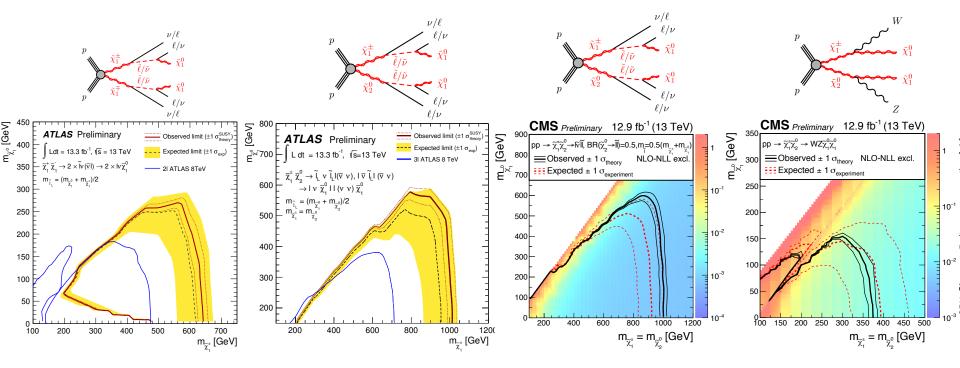

ELECTROWEAK PRODUCTION

ATLAS-CONF-2016-093 SUS-16-024 ATLAS-CONF-2016-096 SUS-16-026

Electroweak production (I)

- Constraints on gluinos/stops are quite stringent ...
- Despite lower expected cross-section, LHC starting to be sensitive to EW SUSY production
 - e.g. Direct production of electroweakinos

NB: C1 and N2 considered as degenerate

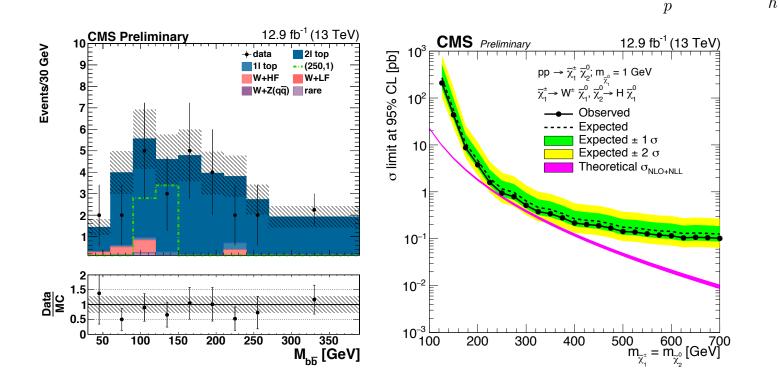

- For now, mainly spectacular final states
 - Multiple leptons (≥3 leptons democratic charginos/neutralino decays)
 - Multiple taus (1 or 3 taus tau-enriched or -dominated models)
 - Multiple b-jets (Higgs bosons in decay chain)

Electroweak production (II)

- Search in multi-lepton final states
 - Democratic decays of N2 and C1
- Searched for in 2-lepton (C1C1 or C1N2 with unidentified leptons)

SUSY @ LHC

- CMS uses information about tau leptons to classify events
- ATLAS only uses electrons/muons
- Searched for in ≥3 leptons (C1N2) or ≥4 leptons



Electroweak production (III)

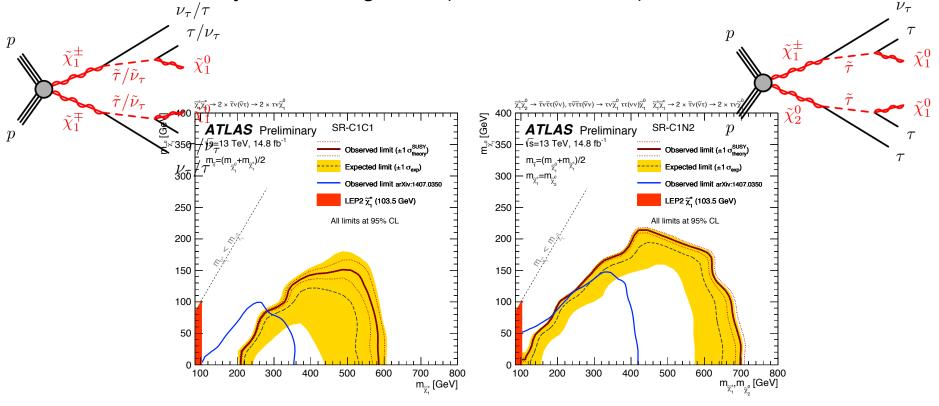
- Search for EW SUSY in WH final states (1-lepton)
 - Only considering $H \rightarrow$ bb decays (mass requirement)
 - Massless neutralino

08/11/16

Only one region (high energy + 2 b-jets)

SUSY @ LHC

W

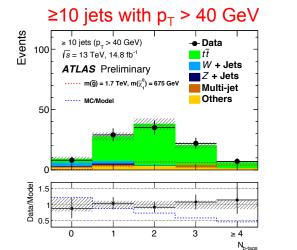

 $\tilde{\chi}_1^{\pm}$

 $\tilde{\chi}_2^0$

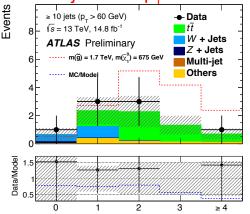
p

Electroweak production (IV)

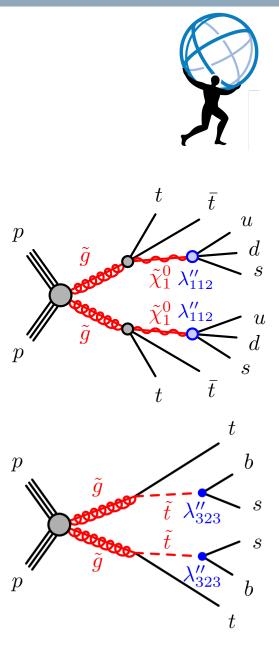
- Search in tau-lepton events
 - ≥2 taus in events
 - Good for trigger !
 - b-jet and Z veto (ttbar/Z+jets suppressed)
 - Dominated by QCD background (misidentified taus)



R-PARITY VIOLATING SUSY



RPV SUSY (I)


- Studied in ATLAS and CMS
 - No update from CMS with 2016 data
 - Focusing on ATLAS program
- R-parity violation described by one non-zero parameter: λ"
- Search performed in 1-lepton channel
 - Very high jet multiplicity expected (up to 16 jets !!!!)
 - Multiple SRs with up to ≥10 jets
 - Background (ttbar+jets) estimated by fit to data in different jet multiplicity bins → modeling looks excellent !

\geq 10 jets with p_T > 60 GeV

N_{b-tag}

RPV SUSY (II) \overline{t} upp \tilde{g} $ilde{\chi}^0_1\,\lambda_{112}''$ λ_{323}'' $ilde{\chi}^0_1 \lambda_{112}''$ ppS [ya]1400 (1)[GeV] 1200 $\tilde{g} \rightarrow t\bar{t} \tilde{\chi}_{1}^{0} \rightarrow t\bar{t} uds$ $\sqrt{s} = 13 \text{ TeV}, 14.8 \text{ fb}^{-1}$ $\tilde{g} \rightarrow t\tilde{t} \rightarrow tbs$ ATLAS Preliminary ATLAS Preliminary \sqrt{s} = 13 TeV, 14.8 fb⁻¹ Observed limit (± 1 $\sigma_{\text{theory}}^{\text{SUSY}}$) Observed limit (± 1 $\sigma_{\text{theory}}^{\text{SUSY}}$) Expected limit (± 1 σ_{exp}) Expected limit (± 1 σ_{exp}) All limits at 95% CL All limits at 95% CL 1000 1000 800 500 600 0 1200 1400 1600 1800 2000 800 1200 1400 1600 600 1000 m(ĝ) [GeV] m(g) [GeV]

Conclusions & Outlooks

ATLAS & CMS heavily involved in SUSY searches @ 13 TeV

- Overall similar sensitivity despite some differences in strategies
- First searches for SUSY targeting most promising final states
 - Strong production
 - 3rd generation
 - Sensitivity strongly improved wrt Run 1 …
 - But still no discovery 😕
- Luminosity increasing (together with gluino/squark contraints)
 - Study of "new" production mechanisms / signatures
 - ➢ EW SUSY, RPV, …
 - > Also time to investigate new models / more realistic (but still simplified) ones