BSM LOP Physics

G.Cacciapaglia (IPNL) TLF meeting Paris 2016

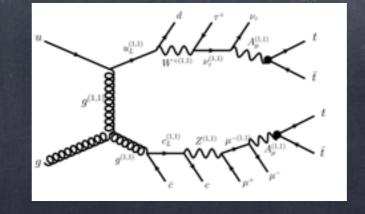
The lop at a glance

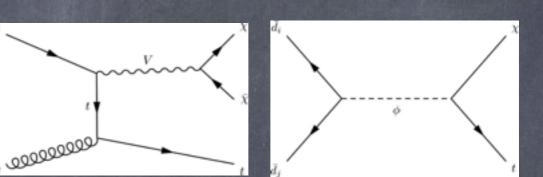
The top quark is the heaviest particle known to mankind!

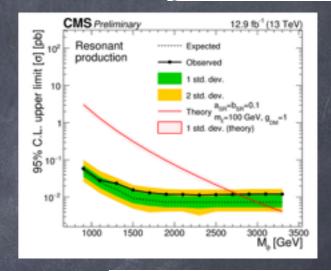
The lop at a glance

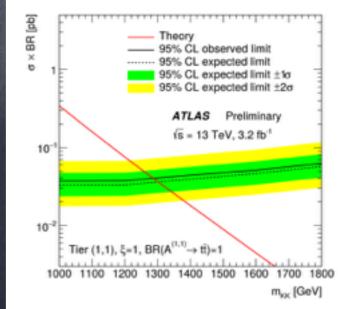
The top quark is the heaviest particle known to mankind!

The only "Natural" fermion


 $m_{\rm top} \sim v_{\rm SM} \sim m_Z$


- Largest coupling to the Higgs
- Ideal candidate for New
 Physics effects!


 $\delta m_H^2 \sim -\frac{3y_{
m top}^2}{8\pi}\Lambda^2$


The lop at a glance

- Top effective couplings (EFT)
- o Resonances
- New states decaying into top + X
 (VLQs, ...)
- Top and DM: Monotop (+ invisible),
 Et + DM, ...
- single-top
- multi (4+) top production

Ø

The lop in composite models

 In composite models, the fermion mass "naturalness" idea is reversed.

$$\frac{1}{\Lambda_f^2} q_L q_R \langle QQ \rangle \sim \frac{\Lambda_{\rm HC}^3}{\Lambda_F^2} \sin \theta \ q_L q_R \qquad \Lambda_{HC} \ll \Lambda_F$$

Fermion masses are "naturally" suppressed: the top is the weirdo!

The top in composite models

A partially composite top:

 $y_L t_L \mathcal{O}_L + y_R t_R \mathcal{O}_R$

 $m_{\rm top} \sim y_L y_R f \sin \theta$

top partners (Aldo's talk)

 $\Lambda_{
m HC} \ll \Lambda_F \qquad \gamma \sim 2$ (large anomalous dimensions)

A concrete model

1311.6562 (see also G.Ferretti)

	HC	SM	grou	ps	96	obal	sym.
	$\operatorname{Sp}(2N_c)$	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	SU(4)	SU(6)	U(1)
$egin{array}{c} Q_1 \ Q_2 \end{array}$		1	2	0	4	1	$-3(N_c-1)q_{\chi}$
Q_3		1	1	1/2	4	T	$-3(N_c-1)q_{\chi}$
Q_4		1	1	-1/2			
$egin{array}{c} \chi_1 \ \chi_2 \ \chi_3 \end{array}$		3	1	x	1	6	~
$egin{array}{c} \chi_4 \ \chi_5 \ \chi_6 \end{array}$		3	1	-x		U	q_{χ}

 $\langle QQ \rangle \Rightarrow SU(4)/Sp(4)$

Higgs emerges as a pseudo-GB

 $\langle \chi \chi \rangle \Rightarrow SU(6)/SO(6)$

coloured composite scalars

A concrete model

	spin	$SU(4) \times SU(6)$	$Sp(4) \times SO(6)$	names
QQ	0	(6,1)	(1, 1)	σ
			(5, 1)	π
$\chi\chi$	0	(1, 21)	(1, 1)	σ_c
			(1, 20)	π_c
χQQ	1/2	(6,6)	(1,6)	ψ_1^1
			(5, 6)	ψ_1^5
$\chi ar{Q} ar{Q}$	1/2	(6,6)	(1, 6)	ψ_2^1
			(5, 6)	ψ_2^5
$Qar{\chi}ar{Q}$	1/2	$(1, \mathbf{ar{6}})$	(1, 6)	ψ_3
$Qar{\chi}ar{Q}$	1/2	$({f 15},{f ar 6})$	(5, 6)	ψ_4^5
			(10, 6)	ψ_4^{10}
$\bar{Q}\sigma^{\mu}Q$	1	(15, 1)	$({f 5},{f 1})$	a
			(10, 1)	ρ
$\bar{\chi}\sigma^{\mu}\chi$	1	(1, 35)	(1, 20)	a_c
			(1, 15)	$ ho_c$

Higgs + 1 Coloured pGBs

top partner candidates

 $20_{SO(6)} = 8_0 \oplus 6_{4/3} \oplus 6_{-4/3}$

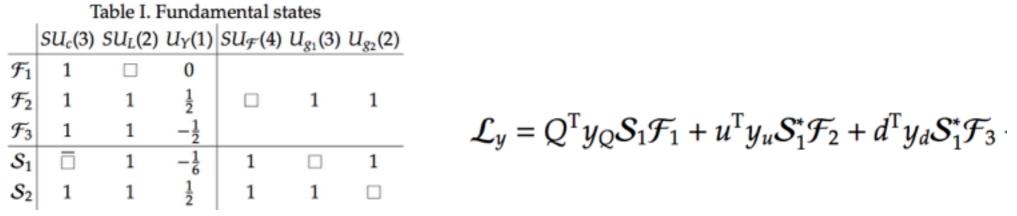
1507.02283

MESSAGE: composite models always contain coloured scalars!

 $20_{SO(6)} = 8_0 \oplus 6_{4/3} \oplus 6_{-4/3}$

Is it true only in specific models? NO!

OPE: $\mathcal{O}_L \mathcal{O}_L \Rightarrow 6_{4/3} + \dots \quad \mathcal{O}_L \mathcal{O}_R \Rightarrow 8_0 + \dots$


How do they couple? Model independent?

$$\mathcal{L} = |D_{\mu}\pi_{6}|^{2} - m_{\pi_{6}}^{2}|\pi_{6}|^{2} + \frac{1}{2}(D_{\mu}\pi_{8})^{2} - \frac{1}{2}m_{\pi_{8}}^{2}(\pi_{8})^{2} - V_{\text{scalar}}(\pi_{6},\pi_{8}) + a_{R}\pi_{6}t_{R}^{c}t_{R}^{c} + a_{L}\pi_{6}^{c}t_{L}t_{L} + b\pi_{8}t_{R}^{c}t_{L} + h.c.$$

MESSAGE: composite models always contain coloured scalars!

Partial compositeness with scalars

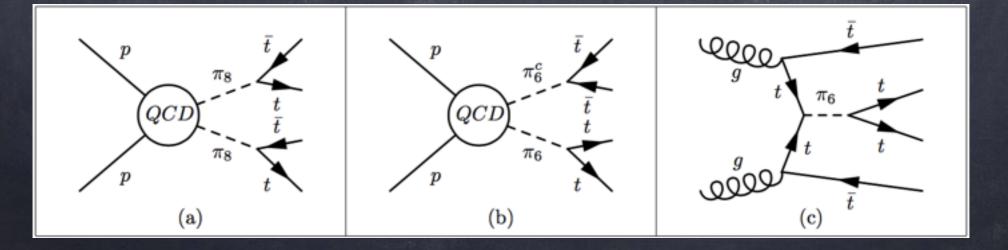
1607.01659

Truly UV completed (renormalisable) theory <SS> bound states are coloured!

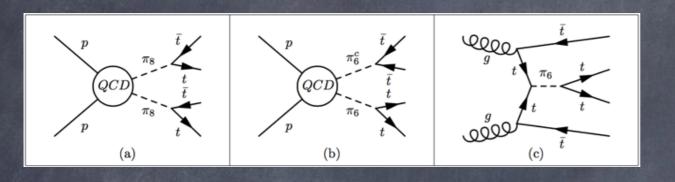
1507.02283

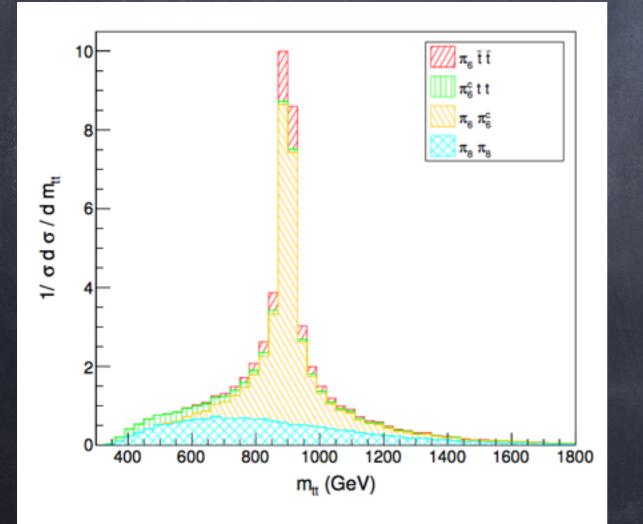
At closer inspection (matching EW quantum numbers):

$$\mathcal{L} = |D_{\mu}\pi_{6}|^{2} - m_{\pi_{6}}^{2}|\pi_{6}|^{2} + \frac{1}{2}(D_{\mu}\pi_{8})^{2} - \frac{1}{2}m_{\pi_{8}}^{2}(\pi_{8})^{2} - V_{\text{scalar}}(\pi_{6},\pi_{8}) \\ + a_{R} \pi_{6}t_{R}^{c}t_{R}^{c} + a_{L} \pi_{6}^{c}t_{L}t_{L} + b \pi_{8}t_{R}^{c}t_{L} + h.c.$$


$$a_R \sim 1$$
 $a_L \sim \frac{v^2}{\Lambda_{\rm HC}^2}$ $b \sim \frac{v}{\Lambda_{\rm HC}}$

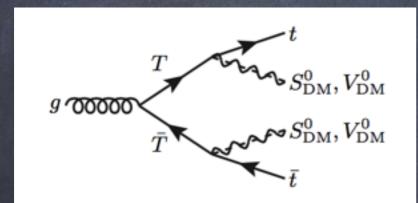
1507.02283


At closer inspection (matching EW quantum numbers):

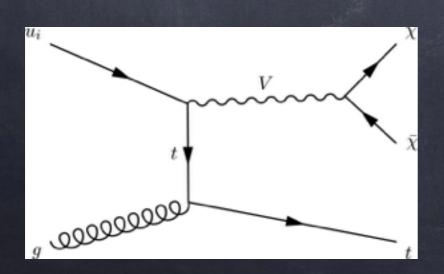

$$\mathcal{L} = |D_{\mu}\pi_{6}|^{2} - m_{\pi_{6}}^{2}|\pi_{6}|^{2} + \frac{1}{2}(D_{\mu}\pi_{8})^{2} - \frac{1}{2}m_{\pi_{8}}^{2}(\pi_{8})^{2} - V_{\text{scalar}}(\pi_{6},\pi_{8}) + a_{R}\pi_{6}t_{R}^{c}t_{R}^{c} + a_{L}\pi_{6}t_{L}t_{L} + b\pi_{8}t_{R}t_{L} + h.c.$$

$$a_R \sim 1$$
 $a_L \sim \frac{v^2}{\Lambda_{\rm HC}^2}$ $b \sim \frac{v}{\Lambda_{\rm HC}}$

Interesting phenomenology

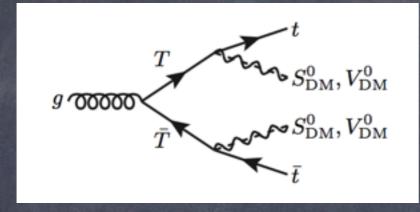


- Select two (+) sign leptons
- Reconstruct two SS tops
- Build invariant mass
- Reconstruct sextet peak


Parton level simulation!

Tops (+ DM)

What does the top have to say about
 Dark Matter?



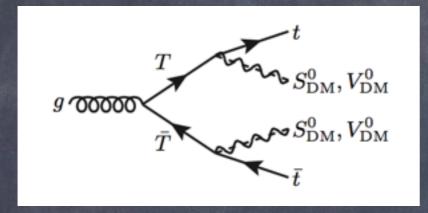
In composite models, top partners can decay to a DM candidate

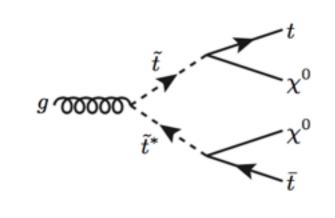
Monotop as a stereotypical mono-stuff DM channel

Tops (+ DM): the VLQ case

- Top partners with non-standard decays (scalars) 1506.05110
- Extra pions may be DM candidates

1508.07014


 $\frac{SU(4) \times SU(4)}{SU(4)}$


Little-Higgs with T-parity (vectors)

1506.05130

Tops (+ DM): Che VLQ case

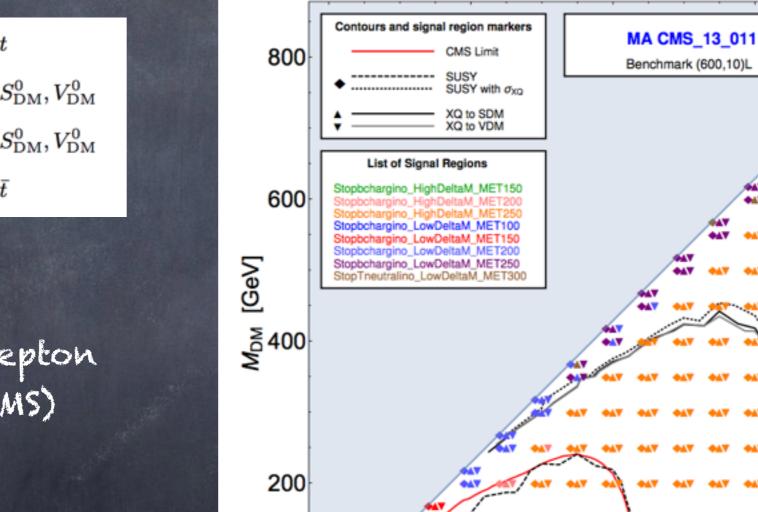
1607.02050

same final state as SUSY stop

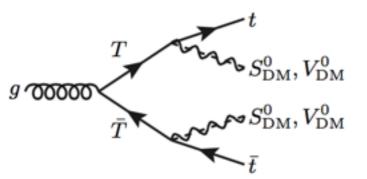
CMS 1-lepton search

	Point (600, 10)L			Point (600, 10)R			
	SUSY	XQ-SDM	XQ-VDM	SUSY	XQ-SDM	XQ-VDM	
eff. SR-A	0.0108	0.0109	0.0111	0.0108*	0.0106*	0.0107*	
eff. SR-B	0.0181*	0.0176^{*}	0.0184*	0.0154	0.0152	0.0153	
excl. XS [pb]	0.0169	0.0173	0.0166	0.0210	0.0213	0.0211	
mass limit/SUSY XS	631	629	633	613	611	612	
mass limit/XQ XS	820	818	822	798	796	797	
1 - CLs	0.99	1	1	0.97	1	1	

	Point (600, 300)L			Point (600, 300)R		
	SUSY	XQ-SDM	XQ-VDM	SUSY	XQ-SDM	XQ-VDM
eff. SR-A	0.00360	0.00366	0.00346	0.00340	0.00321	0.00315
eff. SR-B	0.00748*	0.00685^{*}	0.00632^*	0.00597*	0.00570^{*}	0.00536^{*}
excl. XS [pb]	0.0399	0.0448	0.0480	0.0507	0.0530	0.0563
mass limit/SUSY XS	560	551	546	541	538	533
mass limit/XQ XS	733	722	715	710	706	700
1 - CLs	0.81	1	1	0.72	1	1

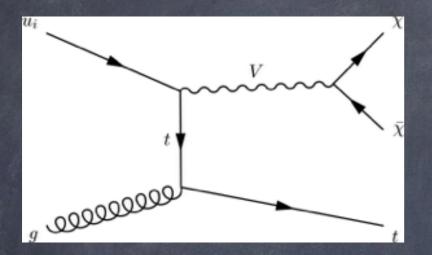

Efficiencies of SUSY and VLQs are very similar!

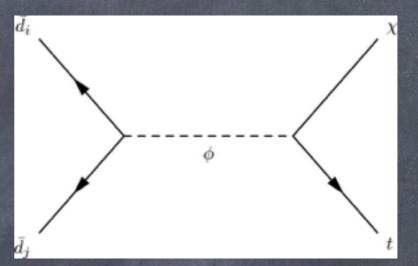
simple recast!


Tops (+ DM): the VLQ case

1607.02050

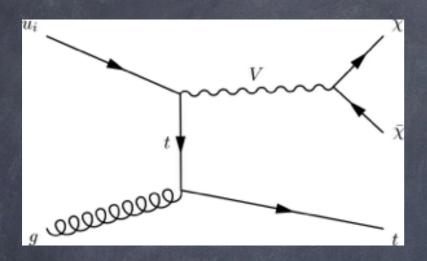
۸۲

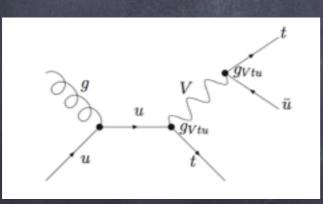



 $M_{\tilde{t}/T}$ [GeV]

Recast of 1-lepton searches (CMS)

Monolops (+ DM): "simplified" models

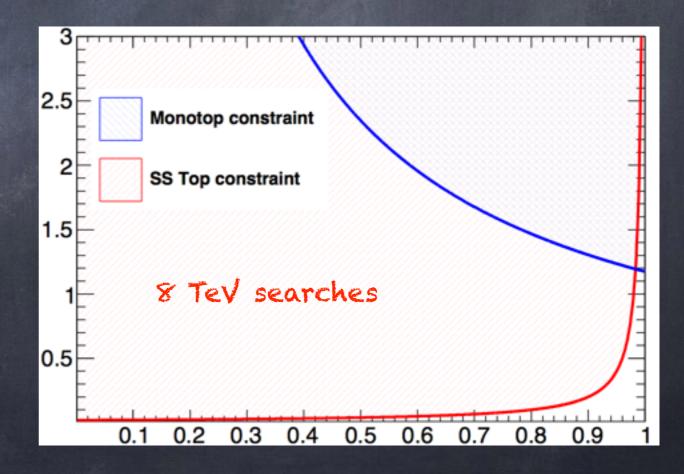


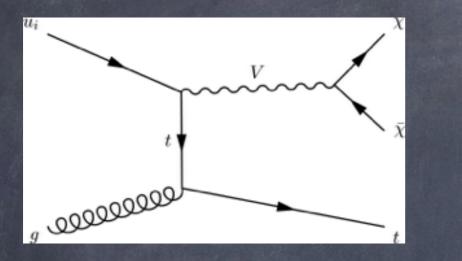


1106.6199, 1311.6478

- Minimal consistent models involve RH tops 1407.7529
- Case 1: vector mediator
- @ Case 2: RH stop with RPV couplings

Monotops (+ DM): Vector mediator

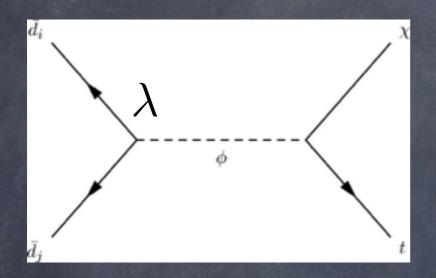



Monotop wins only if $BR(V \rightarrow \chi \chi) > 98\%$

Thank to R.Madar and T.Megy

V can decay back to a top!

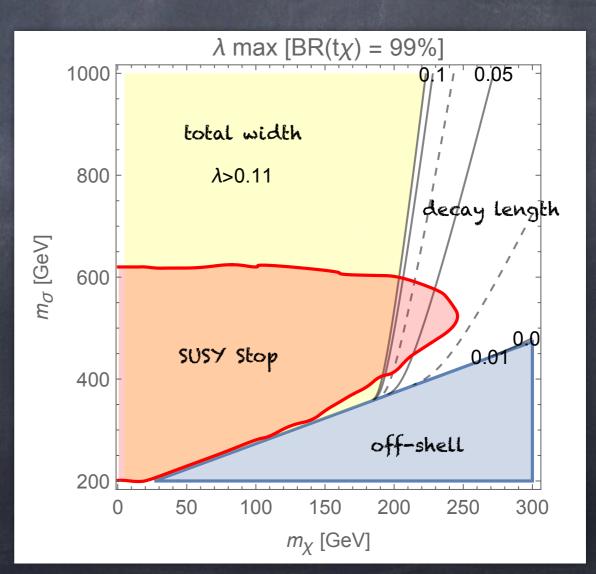
Monotops (+ DM): Vector mediator

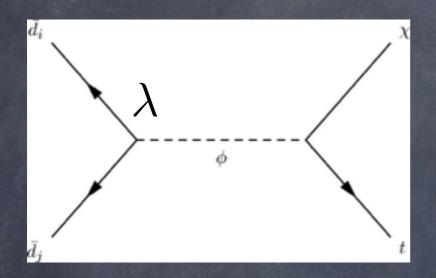

Relic DM assumed!

up quark

 $g_{13} = 0.6$ $g_{\chi} = 3$ 3σ m_{Z'} [GeV] LHC/monotop 5σ GC excess FERMI m_{χ} [GeV]

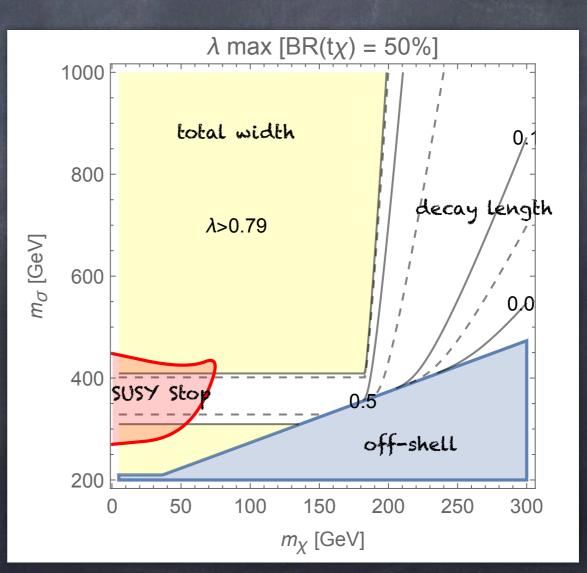
1511.07463


Monolops (+ DM): RPV slop


QCDENLO model (MadGraphenLO)

Work in preparation with A.Deandrea, B.Fuks and H-S.Shao a 2 masses + 2 couplings

STRATEGY: fix BR (t chi),
 extract bounds on 1 coupling


Monolops (+ DM): RPV slop

QCDENLO model (MadGraphenLO)

Work in preparation with A.Deandrea, B.Fuks and H-S.Shao a 2 masses + 2 couplings

STRATEGY: fix BR (t chi),
 extract bounds on 1 coupling

Conclusions and outlook

- The top might be a window to New Physics
- Many experimental searches and theory
 ideas
- I discussed a few examples, but many more
 can be explored
- (It's a chance to have fun!)