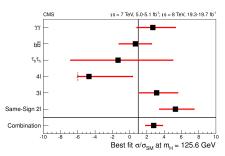
Novel Collider and Dark Matter Phenomenology of a Top-philic Z'

Anibal D. Medina

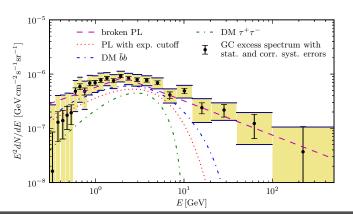
IPhT CEA/Saclay

Theorie LHC France workshop


In collaboration with P. Cox, T. Ray and A. Spray JHEP 1606 (2016) 110 [1512.00471]

tar tH anomaly

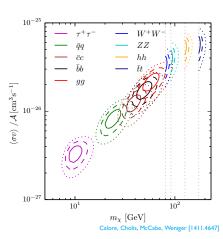
- Mild 2.3 σ excess in the $t\bar{t}H$ production
- Dominant contribution from CMS same-sign dilepton (dimuon) channel


- Combined measurements of Higgs properties using complete Run I dataset
- Precise measurement of $t\bar{t}H$ key objective of Run II

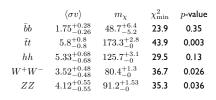
	ATLAS	CMS	Combined
$\gamma\gamma$	$1.4^{+2.6}_{-1.7}$	$2.7^{+2.6}_{-1.8}$	2.1 ± 1.5
$b\bar{b}$	$1.5^{+1.1}_{-1.1}$	$1.2^{+1.6}_{-1.5}$	1.4 ± 0.9
$\tau_{\rm had} \tau_{\rm had}$	$-9.6^{+9.6}_{-9.7}$	$-1.3^{+6.3}_{-5.5}$	-3.5 ± 4.9
SS dilepton	$2.8^{+2.1}_{-1.9}$	$5.3^{+2.1}_{-1.8}$	4.2 ± 1.4
3 lepton	$2.8^{+2.2}_{-1.8}$	$3.1^{+2.4}_{-2.0}$	2.4 ± 1.5
4 lepton	$1.8^{+6.9}_{-2.0}$	$-4.7^{+5.0}_{-1.3}$	-2.5 ± 4.1

Fermi GeV Excess and Dark Matter

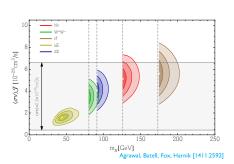
$${\rm DM} \quad \frac{dN}{dE} = \sum_f \frac{\langle \sigma v \rangle_f}{8\pi m_\chi^2} \frac{dN_\gamma^f}{dE} \int_{l.o.s.} ds \, \rho^2(r(s,\psi))$$


$$\text{Generalized NFW profile} \quad \rho(r) = \rho_{\odot} \left(\frac{r}{r_{\odot}}\right)^{-\gamma} \left(\frac{1 + r_{\odot}/r_s}{1 + r/r_s}\right)^{3 - \gamma}$$

p-values


broken PL p=0.47 exp cutoff p=0.16 DM $b\bar{b}$ p=0.43 DM $\tau^+\tau^-$ p=0.065

DM Fits: 3σ Regions



Uncertainties in DM halo

$$\mathcal{A} = [0.17, 5.3]$$
 ($\mathcal{J} = [0.19, 3]$)

Calore, Cholis, McCabe, Weniger [1411.4647]

Effective theory for Top-philic Z'

- Extend the SM by an additional $U(1)^\prime$ where t_R is the only SM particle charged.
- U(1)' anomalous, assume spectators fermions at $\Lambda_{UV} pprox 1$ TeV.
- Assume that U(1)' spontaneously broken by a Higgs sector leaving behind a Z_2 symmetry \to associated Z' which is top-philic and a possible DM candidate in the "hidden" sector Jackson, Servant, Shaughnessy, Tait, Taoso.
- Low-energy effective Lagrangian for the top-philic Z' and a Dirac fermion χ , neutral under all SM gauge symmetries but charged under U(1)'

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu} - \frac{1}{2} \epsilon Z'_{\mu\nu} B^{\mu\nu} + \frac{1}{2} m_{Z'}^2 Z'_{\mu} Z'^{\mu} + g_t Z'_{\mu} \bar{t} \gamma^{\mu} P_R t + \bar{\chi} \gamma^{\mu} (i \partial_{\mu} + g_{\chi} Z'_{\mu}) \chi - m_{\chi} \bar{\chi} \chi .$$

• ϵ depends on UV details, EWPT and dilepton searches \to $\epsilon \ll 10^{-3}$.

Z' production

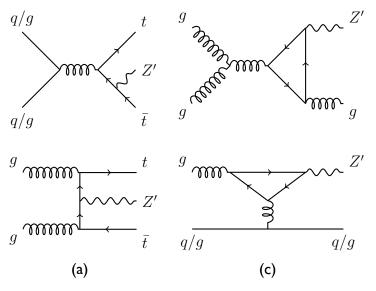
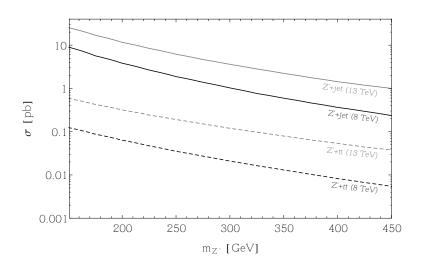



Figure: (a) Leading contributions to ttZ^{\prime} (c) Loop production of $Z^{\prime}j$.

Z' production cross-sections

Z' decays

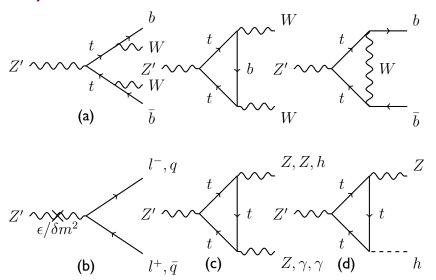
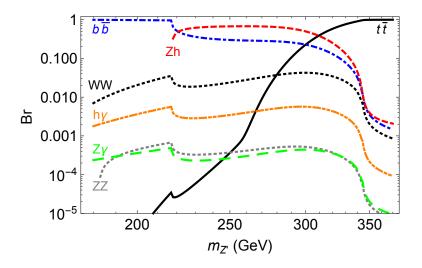
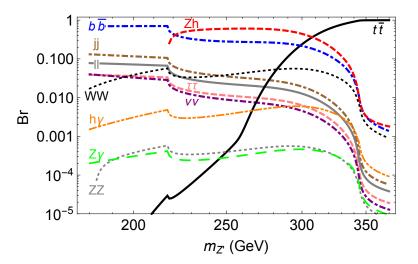
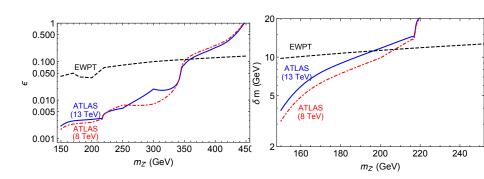
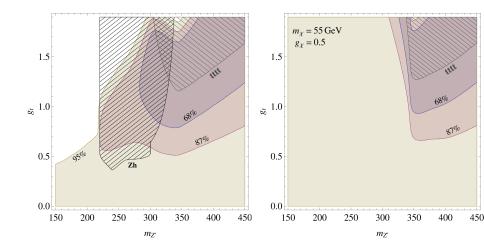




Figure: (a): Tree-level decay to $t^{(*)}\bar{t}^{(*)}$. (b): Tree-level decay from mixing. (c): UV-finite loop decays. (d): UV-divergent loop decays.

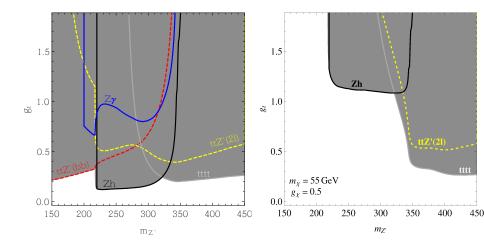
Z' decays for zero mixing



Z' decays with kinetic mixing



Limits on kinetic and mass mixing from dilepton searches



Best fit regions for ttH signal strengths

Projected limits from LHC at $\sqrt{s} = 13$ TeV and

$$\mathcal{L} = 300 \text{ fb}^{-1}$$

Dark matter annihilation channels

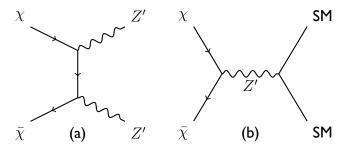
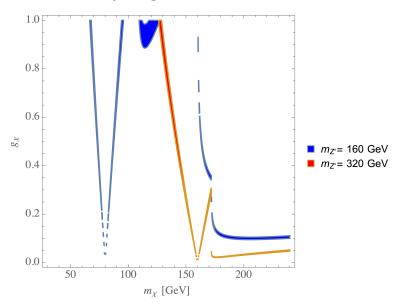
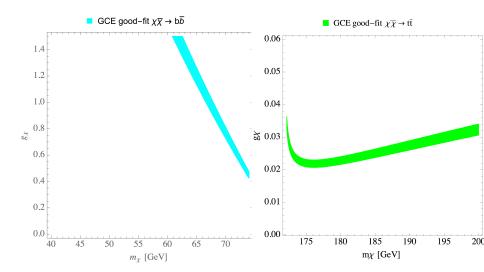



Figure: (a): t-channel annihilation to two Z', relevant when $m_\chi > m_{Z'}$ (there is also a u-channel diagram). (b): s-channel annihilation through on- or off-shell Z' to SM.

DM relic density regions consistent with Planck

Direct detection constraints


- Mostly insensitive due to small $Z-Z^\prime$ mixing.
- Current LUX constraints bound the DM-nucleon scattering to $\sigma_n\lesssim 10^{-45}~{\rm cm^2}$ for $m_\chi=100~{\rm GeV}.$
- For kinetic mixing: $g_{\chi} \epsilon \lesssim 4 \times 10^{-4}$, which requires at most a tuning of $\mathcal{O}(20\%)$.
- Scattering induced by the Z' coupling to gluons:

$$\sigma \sim \frac{g_t^2 g_\chi^2 \alpha_s^2}{36 \pi^3} \, \frac{m_n^4}{m_t^4} \, \frac{\mu_\chi^2}{m_{Z'}^4} \sim 10^{-47} \mathrm{cm}^2 \, g_t^2 g_\chi^2 \bigg(\frac{100 \; \mathrm{GeV}}{m_{Z'}} \bigg)^4 \, .$$

well below current experimental limits.

Regions consistent with the GCE fits for bb and $tar{t}$

Conclusions

- Considered a $U(1)^\prime$ under which only the t_R is charged and a possibly light "hidden" Dirac fermion which plays the role of DM.
- Dominant production mechanisms are $t\bar{t}Z'$ and loop-induced $Z'+{\rm jets}$.
- Z' phenomenology divided in 3 distinct regions: $150 \lesssim m_{Z'} \lesssim 220 \, \text{GeV} \text{ with dominant annihilation into } b\bar{b},$ $220 \lesssim m_{Z'} \lesssim 300 \, \text{GeV} \text{ with dominant annihilation into } ZH$ and $m_{Z'} \gtrsim 300 \, \text{GeV} \text{ with } Z' \text{ decays dominantly into } t\bar{t}^{(*)}.$
- Including the contribution of $t\bar{t}Z'$ improves the fit from the combined ATLAS and CMS 2.3- σ excess in $t\bar{t}H$ production for $m_{Z'}\gtrsim 300$ GeV and $q_t\gtrsim 0.8$.
- ullet DM χ explains the GCE via annihilation into $bar{b}$ and $tar{t}$