Higgs production: yields and kinematical distributions

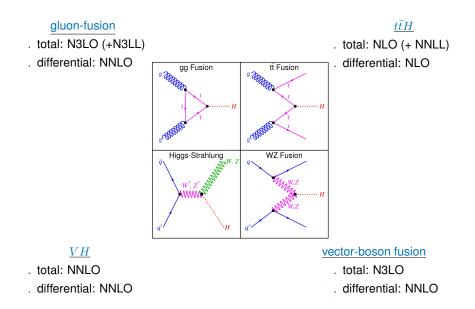
Emanuele Re

CERN & LAPTh Annecy

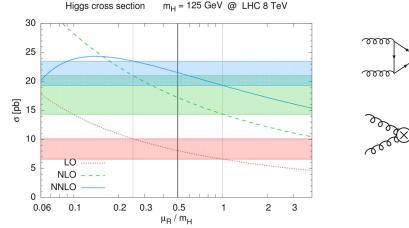
Theorie LHC France workshop IPN Orsay, 7 November 2016

outline

- precision in Higgs physics is (and will be) an important topic in Run II and beyond
- this talk: biased selection of recent theoretical results relevant for Higgs phenomenology:


- 1. total cross sections
- 2. differential distributions (at fixed-order and matched with resummation)
- 3. Monte Carlo tools

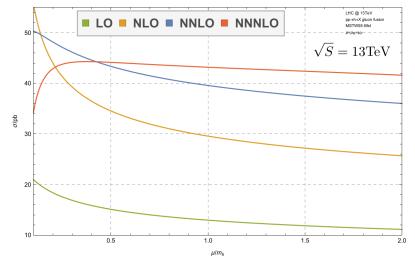
disclaimer:


- . by no means this talk is fully comprehensive (for instance, EW effects not covered)
- I will focus mostly on gluon-fusion and VBF processes
- . apologies in advance for leaving out important results

Higgs production at the LHC: cross-sections

the Higgs cross section

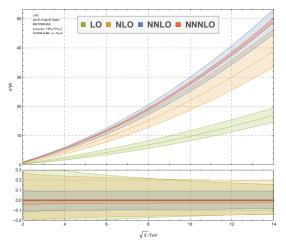
- ► to measure Higgs properties, need to know Higgs production cross section
 - $gg \rightarrow H$ is the dominant production mechanism at the LHC
- known at NLO [Dawson; Djouadi et al.] and NNLO [Harlander,Kilgore; Anastasiou,Melnikov; Ravindran et al.]



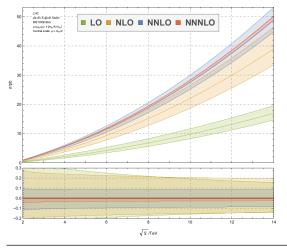
- perturbative series: converges very slowly
- large perturbative uncertainties (estimated by scale variation)

• the $gg \rightarrow H$ cross section is now know at N3LO !

[Anastasiou, Duhr, Dulat, Herzog, Mistlberger (+Furlan, Gehrmann) '14-'15]

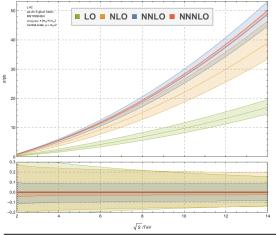

[Anastasiou, Duhr, Dulat, Herzog, Mistlberger (+Furlan, Gehrmann) '14-'15]

▶ N3LO result: exact soft-virtual + expansion around threshold [$N \simeq 30$]


$$\frac{\hat{\sigma}_{ij}(z)}{z} = \hat{\sigma}^{\text{sv}} \delta_{ig} \delta_{jg} + \sum_{N=0}^{\infty} \hat{\sigma}_{ij}^{(N)} (1-z)^N \quad \text{where} \quad z = m_H^2 / \hat{s}$$

[Anastasiou, Duhr, Dulat, Herzog, Mistlberger (+Furlan, Gehrmann) '14-'15]

- . N3LO result: perturbative uncertainties drastically reduced [±2 %]
- . consider residual effects: $(1/m_t)$, threshold resummation , missing N3LO PDFs , PDFs+ $\alpha_{\rm S}$, EW effects...

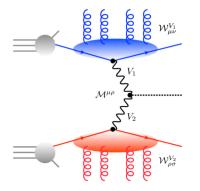

[Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger '16]

- . N3LO result: perturbative uncertainties drastically reduced [±2 %]
- . consider residual effects: $(1/m_t)$, threshold resummation , missing N3LO PDFs , PDFs+ $\alpha_{\rm S}$, EW effects...

 $\sigma = 48.58 \text{ pb}_{-3.27 \text{ pb}}^{+2.22 \text{ pb}} (+4.56\%) \text{ (theory)} \pm 1.56 \text{ pb} (3.20\%) \text{ (PDF} + \alpha_s).$

[Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger '16]

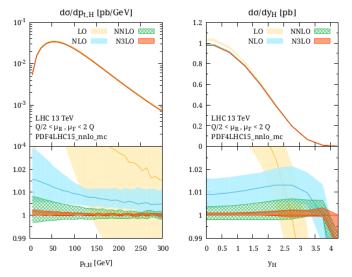
. N3LO result: perturbative uncertainties drastically reduced [±2 %]


. consider residual effects: $(1/m_t)$, threshold resummation , missing N3LO PDFs , PDFs+ $\alpha_{\rm S}$, EW effects...

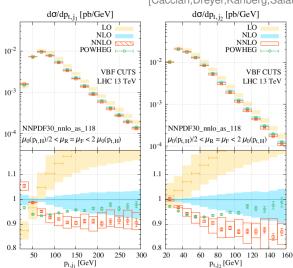
$\delta(ext{scale})$	$\delta(ext{trunc})$	$\delta(ext{PDF-TH})$	$\delta(\mathrm{EW})$	$\delta(t,b,c)$	$\delta(1/m_t)$
$+0.10 { m ~pb} \\ -1.15 { m ~pb}$	± 0.18 pb	$\pm 0.56~\mathrm{pb}$	$\pm 0.49~\rm{pb}$	$\pm 0.40~{\rm pb}$	$\pm 0.49~\mathrm{pb}$
$^{+0.21\%}_{-2.37\%}$	$\pm 0.37\%$	$\pm 1.16\%$	$\pm 1\%$	$\pm 0.83\%$	$\pm 1\%$

VBF (inclusive) Higgs production at N3LO

the vector-boson fusion cross section is now also know at N3LO !

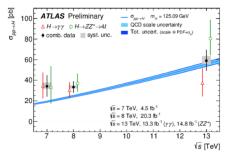

[Dreyer,Karlberg '16]

- . "structure function approach: $VBF \simeq \text{DIS} \times \text{DIS}$
- . DIS coefficient known at N3LO
- . inclusive over radiation, but exclusive over Higgs distributions (Q_1 and Q_2 known)

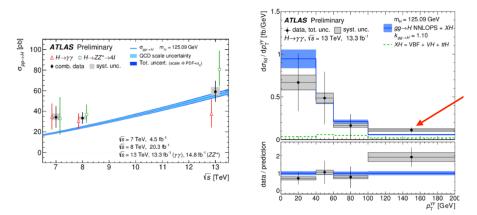

VBF (inclusive) Higgs production at N3LO

[Dreyer,Karlberg '16]

in absence of VBF cuts, corrections are almost flat, and N3LO completely included in NNLO bands: "no" perturbative uncertainties left

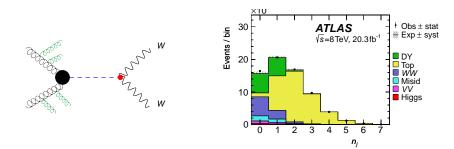

VBF exclusive Higgs production at NNLO

[Cacciari,Dreyer,Karlberg,Salam,Zanderighi '15]


with VBF cuts, corrections wrt NLO can be sizeable, up to 10-12 %
 not always captured by NLO+PS

theory vs. data

is theoretical accuracy high enough ?


theory vs. data

- is theoretical accuracy high enough ?
- what about differential distributions?
 - . NNLO computations, matched with resummation when needed, are becoming the new standard $! \end{tabular}$

the "zero-jet" cross section

- jet-binned cross sections important to suppress backgrounds
 - . for $H \rightarrow WW$ and $H \rightarrow \tau \tau$: jet veto at 25-30 GeV

the "zero-jet" cross section

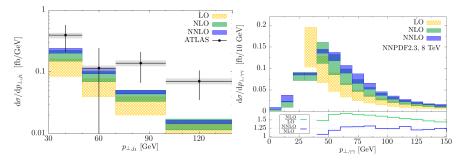
0-jet x-section now known at N3LO + NNLL + LL_B

N³LO+NNLL+LL_R v. NNLO+NNLL jet veto cross section 50 Σ_{0-jet}(p_{t,veto}) [pb] NNLL resummation of $\log(m_H/p_{T,\text{veto}})$ 45 40 [Banfi et al. '12 (+heavy quarks '13)] 35 30 [Becher et al. '15; Stewart et al. '13] 25 NNLO+NNLL 20 N³LO+NNLL+LL_R . N3LO and NNLO H+1 jet 15 20 30 50 70 100 150 ratio to N³LO+NNLL+LL_R 1.2 [Anastasiou et al. '15] pp 13 TeV, anti-kt R = 0.4 [Boughezal et al. '15] Finite $m_{t,h}$, $\mu_0 = Q_0 = m_H/2$, $R_0 = 1.0$, JVE 1.1 PDF4LHC15 (NNLO), $d_r = 0.118$ 1 jet-radius logarithms 0.9 [Dasgupta et al. '14] 0.8 20 30 50 70 100 150 pt veto [GeV]

- impact of N3LO: +2%; impact of resummation: +2% (not shown in plot above)
- \blacktriangleright final perturbative uncertainty: ~ 4 %

[Banfi et al. '15]

Higgs + 1 jet cross section

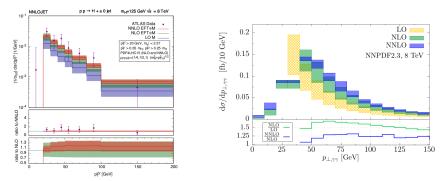

▶ gluon induced ⇒ large fractions of events have at least 1 jet

. at 13 TeV: $\sigma(p_{T,j} > 30 \text{ GeV}) \simeq 40\% \sigma_{tot}$

. several measurements available, more to come!

known at NNLO (in the HEFT)

[Boughezal, Caola et al. '15; Boughezal et al. '15; Chen et al. '16]

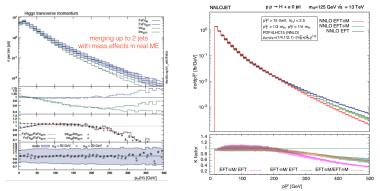


NNLO corrections are important, and improve data/theory agreement

Higgs + 1 jet cross section

- ▶ gluon induced ⇒ large fractions of events have at least 1 jet
 - . at 13 TeV: $\sigma(p_{T,j} > 30 \text{ GeV}) \simeq 40\% \sigma_{tot}$
 - . several measurements available, more to come!
- known at NNLO (in the HEFT)

[Boughezal, Caola et al. '15; Boughezal et al. '15; Chen et al. '16]

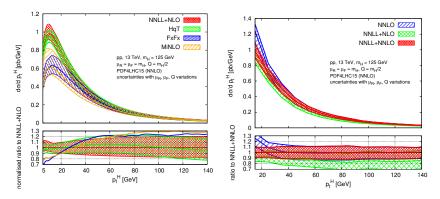


NNLO corrections are important, and improve data/theory agreement

Higgs + 1 jet cross section

- gluon induced \Rightarrow large fractions of events have at least 1 jet
 - . at 13 TeV: $\sigma(p_{T,j} > 30 \text{ GeV}) \simeq 40\% \sigma_{tot}$
 - . several measurements available, more to come!
- known at NNLO (in the HEFT)

[Boughezal,Caola et al. '15; Boughezal et al. '15; Chen et al. '16]


- exact mass effects important at high p_T:
 - differential NLO HEFT + LO exact masses up to H+3 jets
 - NLOPS merging up to 2 jets

H+3 jets [Greiner et al. '15-'16] [Buschmann et al. '14; Frederix et al. '16]

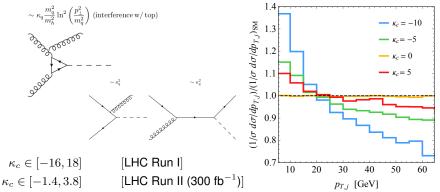
the Higgs transverse momentum distribution

- Sudakov resummation at NLO+NNLL (NNLO inclusive) available in various approaches
 [Bozzi,Catani et al.; Becher et al.]
- matching at NNLO+NNLL (N3LO inclusive) now available

[Monni, ER, Torrielli '16]

- new method to resum directly in direct space, validated against previous results
- resummation: sizeable below 30 GeV
- medium-high p_T, matching to differential NNLO matters (as expected): + 10 %

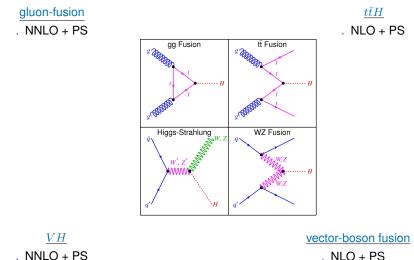
light-Yukawa from Higgs p_T


several methods have been proposed to constrain the light Yukawa couplings

[exclusive decays (Bodwin et al.; Kagan et al.; Koenig,Neubert), recasting $Vh(\rightarrow b\bar{b})$ (Perez et al.; Delaunay et al.),

hc (Brivio et al.), width, global fit]

light-Yukawa from Higgs p_T


- several methods have been proposed to constrain the light Yukawa couplings
- bounds can also be inferred comparing data and theory for differential distributions
 [Bishara,Haisch,Monni,ER '16; Soreq et al. '16]
 - $gg \rightarrow H + j$: bottom and charm mass effects important at low to intermediate $p_{T,H}$
 - interplay with quark-initiated processes

• using $p_{T,H}$, EX uncertainty expected not to be a limiting factor

. improving theory \Rightarrow better bound!

Higgs production at the LHC: MC generators

. NLO + PS

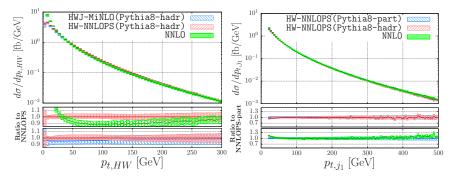
MC generators for Higgs physics

 steady progress, mostly related to "NLO+PS merging", from which "NNLO+PS" can be achieved (for color-singlet production)

. NNLOPS for $gg \rightarrow H$ available with 2 methods MiNLO+Powheg, UN2LOPS

[Hamilton et al. '13; Hoeche et al. '14]

. same accuracy in principle possible also with Geneva

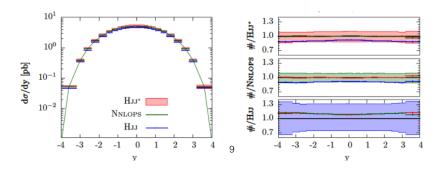

[Alioli et al.]

MC generators for Higgs physics

- steady progress, mostly related to "NLO+PS merging", from which "NNLO+PS" can be achieved (for color-singlet production)
- . few months ago: $pp \rightarrow WH$ at NNLO+PS

[Astill,Bizon,ER,Zanderighi '16]

- should be possible to include NLO QCD corrections to H decay


MC generators for Higgs physics

- steady progress, mostly related to "NLO+PS merging", from which "NNLO+PS" can be achieved (for color-singlet production)
- . few months ago: $pp \rightarrow WH$ at NNLO+PS

[Astill,Bizon,ER,Zanderighi '16]

- should be possible to include NLO QCD corrections to ${\cal H}$ decay
- . important result (with MiNLO): H+jj @ NLO, H+j @ NLO and H @ NNLO

[Hamilton, Frederix '15]

conclusions

conclusions

Thank you for your attention!

conclusions

Thank you for your attention!

...questions?