

SEARCHING FOR DM AT THE LHC

Marie-Hélène Genest

09/11/2016

The E_T^{miss} +X searches

- All we see is the X, accompanied by large missing transverse energy from the DM production
- X can come from ISR, or from a more complicated interaction involving more than one new states
- X can be a single object (*mono-X searches*), or a more complex final state (e.g. at top-quark pair)

The E_T^{miss} +X searches in Run-2

X	ATLAS	CMS
Jet	Phys. Rev. D 94, 032005 (2016)	
W or Z (qq)	arXiv:1608.02372 (subm. to PLB)	CMS-PAS-EXO-16-037
Z(II)	ATLAS-CONF-2016-056	CMS-PAS-EXO-16-038
Photon	JHEP 1606 (2016) 059	CMS-PAS-EXO-16-039
b quark(s)	ATLAS-CONF-2016-086	CMS-PAS-B2G-15-007
Top quark(s)	ATLAS-CONF-2016-050 (1-lepton) ATLAS-CONF-2016-076 (2-lepton) ATLAS-CONF-2016-077 (0-lepton)	CMS-PAS-EXO-16-005 (0/1-lepton tt) CMS-PAS-EXO-16-028 (2-lepton tt) CMP PAS EXO-16-040 (1 boosted top)
Η(γγ)	ATLAS-CONF-2016-087	CMS-PAS-EXO-16-011
H(bb)	arXiv:1609.04572 (subm. to PLB)	CMS-PAS-EXO-16-012
H(4l)	ATLAS-CONF-2015-059	
		2015 1-4 ICHED 201(J-4

2015 dataset or ICHEP 2016 dataset

M-H Genest - Searching for DM at the LHC

Mono-X general strategy

- Define a signal region (SR) by selecting events such as to get an enhanced signal-over-BG ratio:
 - Select events with a high- $p_T X$ and a large E_T^{miss}
 - Veto extra objects (e.g.: no e or μ in mono- γ)
 - Avoid mismeasured objects which could lead to fake E_T^{miss} (e.g.: no jet pointing in the E_T^{miss} direction, clean against non-collision BG...)
- Estimate the BG contribution in the SR (data-driven or using MC)
- If no excess in the SR: show the limits on models, following the recommendations of the ATLAS/CMS Dark Matter Forum (arXiv:1507.00966) and of the LHC DM WG (arXiv:1603.04156)
 - Favours the use of simplified models
 - Benchmarks with specific couplings
 - Limits in the $m_{\text{DM}}/m_{\text{Med}}$ plane

 E_T^{miss} + jet in ATLAS

Selection:

- Leading central jet within $p_T > 250 \text{ GeV}$
- 7 inclusive SRs with E_T^{miss} thresholds from >250 GeV to >700 GeV
- $\Delta \phi$ (sel. jets, E_T^{miss})>0.4
- Lepton veto and more than 4 central jets

M-H Genest - Searching for DM at the LHC

Main BG from W control regions:

Background process	Method	Control sample
$Z(\rightarrow v\bar{v})$ +jets	MC and control samples in data	$W(\rightarrow \mu \nu)$
$W(\rightarrow ev)$ +jets	MC and control samples in data	$W(\rightarrow ev)$
$W(\rightarrow \tau \nu)$ +jets	MC and control samples in data	$W(\rightarrow ev)$
$W(\rightarrow \mu \nu)$ +jets	MC and control samples in data	$W(\rightarrow \mu \nu)$
$Z/\gamma^* (\rightarrow \mu^+ \mu^-) + jets$	MC and control samples in data	$Z/\gamma^*(\rightarrow \mu^+\mu^-)$
$Z/\gamma^* (\rightarrow \tau^+ \tau^-)$ +jets	MC and control samples in data	$W(\rightarrow ev)$
$Z/\gamma^* (\rightarrow e^+ e^-) + jets$	MC only	
tī, single top	MC only	
Diboson	MC only	
Multijets	data-driven	
Non-collision	data-driven	

$E_T^{miss} + W/Z$ (hadronic) in ATLAS

Highly boosted W/Z: decay products merged in a 'fat' jet

Selection:

- $E_T^{miss} > 250 \text{ GeV}, p_T^{miss} > 30 \text{ GeV} and \Delta\phi(p_T^{miss}, E_T^{miss}) < \pi/2, \Delta\phi(\text{jet}, E_T^{miss}) > 0.6$
- Veto on leptons
- Central, $p_T > 200$ GeV large-R trimmed jet tagged as a W/Z (mass + D2 selection)

M-H Genest - Searching for DM at the LHC

$E_T^{miss} + jet/Z/W(hadronic)$ in CMS

Mono-V:

 $\label{eq:K8} \begin{array}{l} \mbox{ MK8 jet with } p_T \! > \! 250 \ {\rm GeV}, \ E_T{}^{\rm miss} \! > \! 250 \ {\rm GeV}, \\ m_J \mbox{ in [65-105] GeV}, \ \tau_{21} \! < \! 0.6 \end{array}$

Mono-jet selects remaining events with:

• AK4 jet with $p_T > 100 \text{ GeV}$, $E_T^{\text{miss}} > 200 \text{ GeV}$

BG estimation via 5 CRs (Zee, Wev, Zµµ, Wµv, γ +jets)

 $E_T^{miss} + Z(ll)$

Selection:

- ee or $\mu\mu$ (*ATLAS: close-by*) pairs compatible with the *Z* mass, away from E_T^{miss} and whose p_T is well balanced with the large E_t^{miss}
- jet/E_T^{miss} separation, no b-jet (*CMS: no extra jet, no hadronic tau*)

BG estimation:

ZZ (and WZ in CMS) from NNLO-corrected MC WZ from 3-lepton CR in ATLAS $\,$

 E_T^{miss} + photon

Selection:

High- p_T central photon (ATLAS: 150 GeV, loose cut on z_0 , CMS: 175 GeV, no end-cap)

CMS Preliminary

800

 $\sqrt{s} = 13 \text{ TeV}, 12.9 \text{ fb}^{-1}$

95% CL Obs. Limit

т_{рм} [GeV]

observed limit

expected limit

expected $\pm 1\sigma$

expected $\pm 2\sigma$

truncated limit

 10^{3}

m_y [GeV]

Exp. Limit ±20

10²

10²

- Large E_T^{miss} (ATLAS: 150 GeV, CMS: 170 GeV) separated from the jets and the γ
- Lepton veto (+ veto on more than 1 jet in ATLAS)

BG estimation:

- Z/W+γ from leptonic CRs (ATLAS) or from NLO-corrected MC (CMS)
- Fake photons from data-driven methods
- Non-collision BG negligible (ATLAS) or estimated with data (CMS)

Comparison to direct detection

But one must remember the **assumption of the model** considered. It's not a competition with direct detection: we are complementary!

M-H Genest - Searching for DM at the LHC

 $E_{T}^{miss} + b quark(s)$

DM+bb

CMS

Preliminary

95% CL limits

- Observed

If the production of DM goes through a scalar interaction, one could enhance the coupling to heavy quarks

Selection:

Large E_T^{miss} separated from the jets, b-jet(s) (ATLAS: 2, CMS: 1 or 2), lepton veto ATLAS: angular separation of the jets, momentum imbalance of the two b-jets BG estimation: 2.17 fb⁻¹ (13 TeV) DM + heavy flavour 10000 F

Through leptonic CRs

150 200 250 300 350 400 450 500 550 600

E^{miss} [GeV]

BG estimation using dedicated CRs

 E_T^{miss} + top quarks in CMS

Hadronic:

 E_T^{miss} , $\geq 1 \mbox{ or } 2$ b-jet, MVA resolved-hadronic-top tagger: categorize by number of top tags

Semi-leptonic (e or μ):

 E_{T}^{miss} , ≥ 1 b-jet, $m_{T_{\text{c}}}\,m_{T2}{}^{W}$

Combination of the three channels

Fit to the E_T^{miss} distributions to extract the signal

Di-leptonic (e or μ): E_T^{miss} , Z(ll) veto, ≥ 1 b-jet, $\Delta\phi(E_T^{miss}, ll)$

 E_{T}^{miss} + top quark searches competitive with mono-jet/V at low M_{Med} Future combination possible

 E_T^{miss} + boosted top quark

Can also probe more exotic models producing one top in the final state, e.g. this FCNC process:

Selection:

 $E_T^{miss} > 250 \text{ GeV}$ High- p_T (>250 GeV) large jet (CA15) tagged as a top (m_J, τ_{32} , subjet b-tag) Veto b-jets which are far away from the large jet and leptons (incl. τ)

BG estimation from leptonic CRs

 E_T^{miss} + Higgs

 $h \rightarrow \gamma \gamma$: low BR but clean signal

Selection (2HDM interpretation):

- $p_{T,\gamma 1}/m_{\gamma \gamma} > 0.35$ (CMS: > 0.5), $p_{T,\gamma 12}/m_{\gamma \gamma} > 0.25$
- $105 < m_{\gamma\gamma} < 160 \text{ GeV} (\text{CMS: } 120 < m_{\gamma\gamma} < 130 \text{ GeV})$
- E_T^{miss} significance > 7 GeV^{1/2} (CMS: E_T^{miss} >105 GeV)
- $p_{T,\gamma\gamma} > 90 \text{ GeV}$

BG estimation in mass sidebands

16

Higgs as a portal What if the Higgs can decay to DM?

Multiple topologies can be used:

M-H Genest - Searching for DM at the LHC

Searching for the mediators

- Look for a bump in the dijet mass over a smoothly falling background
- To probe low masses, need some trick to by-pass the huge trigger rate wall:
 - Use an ISR object on which to trigger (e.g. a photon)
 - Do the analysis at trigger level (TLA) :
 - Bandwith = rate x size → reduce size

Searching for the mediators

2015 dataset or ICHEP 2016 dataset

Summary: axial-vector mediator

M-H Genest - Searching for DM at the LHC

Mono-jet / dijet interplay

 $g_q = 0.25, g_{DM} = 1$

 $g_q = 0.1, g_{DM} = 1.5$

The interplay depends on the couplings... Complementary approaches to probe the DM parameter space thoroughly

Summary

- Many new results by CMS and ATLAS this summer
 - No significant excess seen
 - Complementary to other DM searches

- Quickly evolving field; lively discussions in the LHC DM WG
 - New focus in run-2 on simplified models
 - Using various complementary searches / combinations to probe the parameter space
- Results being prepared with the full dataset (36-38 fb⁻¹) recorded in 2016

Stay tuned!

22

 $E_T^{miss} + h(bb)$ in CMS

CMS:

- + Resolved: 2 AK4 b-tagged jets, $p_{\rm T}(bb)$ / $E_{\rm T}^{\rm miss}$ > 150 / 170 GeV
- Boosted: 1 AK8 jet with subjets b-tagged, $p_{Tj} / E_T^{miss} > 200 \text{ GeV}$

 $E_T^{miss} + h(bb)$ in ATLAS

• The two b-jets from Higgs decay can be resolved or merged into a fat jet, depending on the boost : cover both possibilities

Resolved	Boosted
150 < E _T ^{miss} < 500 GeV (split in 3 regions)	$E_{T}^{miss} > 500 \text{ GeV}$
\geq 2 jets, ranked by b-tagging, centrality and $p_{\rm T}$	\geq 1 large-R jet associated with \geq 2 track jets
The 2 highest ranked reconstruct the Higgs mass	Split in different b-tagging categories
Large p_{T} sum of the jets, $j_{h,1}$ or $j_{h,2}$ has $p_{T}{>}45GeV$	Shape fit of the large-R mass distribution
Df(jets, E _T ^{miss})>20°	p _T ^{miss} > 30 GeV
p_T^{miss} > 30 GeV and Df(p_T^{miss} , E_T^{miss}) <p 2<="" td=""><td></td></p>	
Df(E _T ^{miss} , h _{bb})>120°	
Df(j _{h,1} , j _{h,2})<140°	

Veto on leptons

- The main BG is top pairs, Z(vv)+jets, W+jets
 - Use mass sidebands + leptonic CRs

 $E_T^{miss} + h(bb)$ in ATLAS

Resolved top tagger in CMS

- MVA discriminant to identify tri-jet combinations from top quark decays
- Training a BDT with simulated $t\bar{t}$ events
- Input variables:
 - Kinematic fit probability
 - b-tag discriminant
 - Quark/gluon likelihood
 - ΔR(j₁,b), ΔR(j₂,b)
 - Δφ(j₁,b), Δφ(j₂,b)
- Efficiencies in MC calibrated with tt
 events in data
- Tops in $t\bar{t}$ +DM production generally have moderate p_{τ}

Kevin Sung

Higgs portal

Channel	Expected	Observed
VBF	0.31	0.28
V(jj)H	0.86	0.78
$Z(\ell\ell)H$	0.62	0.75
Combine	0.27	0.25

 $E_T^{miss} + VBF in CMS$ CMS-PAS-HIG-16-016

Selection:

- $p_{T,j1(j2)} > 80 (70) \text{ GeV}, \Delta \eta(j_1, j_2) > 3.6, m_{jj} > 1.1 \text{ TeV}$
- $E_T^{miss} > 200 \text{ GeV} \text{ and } \Delta\phi(\text{jet}, E_T^{miss}) > 2.3$

BG estimation through W/Z CRs

CMS dijet searches

