



# The Inert Doublet Model low mass regime and the Galactic centre excess

GDR - Terascale, 25/11/2016

Based on work in progress, in collaboration with B. Eiteneuer, J. Heisig



Andreas Goudelis LPTHE - Paris

#### The Inert Doublet Model

- $\cdot$  Gauge + spacetime symmetries : as in the SM.
- $\cdot$  Particle content : SM + a Z<sub>2</sub> odd SU(2) doublet of complex scalar fields.

$$H = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}} \left( v + h^0 + iG^0 \right) \end{pmatrix}, \quad \Phi = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}} \left( H^0 + iA^0 \right) \end{pmatrix}$$

• Lagrangian :  $\mathcal{L}_{\text{IDM}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{cov},0} - V_0$ 

$$\mathcal{L}_{\text{cov},0} = (D_{\mu}H)^{\dagger}(D^{\mu}H) + (D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi)$$
  
$$V_{0} = \mu_{1}^{2}|H|^{2} + \mu_{2}^{2}|\Phi|^{2} + \lambda_{1}|H|^{4} + \lambda_{2}|\Phi|^{4} + \lambda_{3}|H|^{2}|\Phi|^{2} + \lambda_{4}|H^{\dagger}\Phi|^{2} + \frac{\lambda_{5}}{2}\left[(H^{\dagger}\Phi)^{2} + \text{h.c.}\right]$$



• The  $Z_2$  symmetry ensures the stability of the lightest component of  $\Phi \rightarrow H^o/A^o$  are dark matter candidates. NB: H<sup>o</sup>/A<sup>o</sup> practically interchangeable, take H<sup>o</sup> LOP for concreteness

# The IDM as a dark matter model

 $\cdot$  Considering all constraints modulo direct detection, the IDM can reproduce the observed DM abundance in the Universe in two distinct H<sup>o</sup> mass ranges



 $\cdot$  The high – mass region of the IDM is pretty hard to probe. Partial coverage with direct/indirect detection. In the following, focus on the low – mass region.

 $\cdot$  Most of its features can be understood by imposing: relic abundance, LEP-II bounds on the heavier  $Z_2^2$  – odd masses and Higgs mass.

# Focus on the low mass region



#### Focus on the low mass regime

• Impose LEP-II bounds on the heavy  $Z_{2}$  – odd masses :

 $\rightarrow$  Coannilation becomes essentially irrelevant.



B. Eiteneuer, A. G., J. Heisig, to appear

# Focus on the low mass regime

 $\cdot$  Impose LEP-II bounds on the heavy  $\rm Z_{_2}$  – odd masses :

- $\rightarrow$  Coannilation becomes essentially irrelevant.
- $\cdot$  Impose Higgs mass constraint :
  - → One Higgs funnel is chosen
  - $\rightarrow$  H<sup>o</sup> lighter than ~120 GeV
  - $\rightarrow$  No Higgs final states



# Focus on the low mass regime

 $\cdot$  Impose LEP-II bounds on the heavy  $\rm Z_{_2}$  – odd masses :

- $\rightarrow$  Coannilation becomes essentially irrelevant.
- $\cdot$  Impose Higgs mass constraint :
  - → One Higgs funnel is chosen
  - $\rightarrow$  H<sup>o</sup> lighter than ~120 GeV
  - $\rightarrow$  No Higgs final states
- Impose DD constraints :
  - $\rightarrow$  only tiny values of  $\lambda_{_{\rm L}}$  allowed



#### The Galactic centre excess

 $\cdot$  Once all known contributions to the Fermi gamma-ray sky are subtracted, one is left with an excessive emission :



- $\cdot$  Some apparent characteristics:
- roughly spherical morphology
- extends up to more than 10  $^{\rm o}$  away from the Galactic centre
- is rather cusped towards the GC
- peaks at a few GeV in  $E^2x$  (Flux).

Daylan *et al* (2014) Calore, Cholis, Weniger (2014)

# Fitting the CGE with dark matter - 1

 $\cdot$  Several explanations have been proposed, most of which involve astrophysical effects.

Petrovic, Serpico, Zaharijas (2014) x2 Cholis *et al* (2015) Gaggero, Taoso, Urbano, Valli, Ullio (2015)

 $\cdot$  Or, we could entertain the possibility that it is due to dark matter.

Calore, Cholis, Weniger (2014) *cf* however concerns in Calore *et al* (2016)

 $\cdot$  Interesting point: at least when fitting the GCE with individual annihilation channels...



Eiteneuer (2016) *cf* also Calore, Cholis, Weniger (2014)

# Fitting the CGE with dark matter - 2

 $\cdot$  Get a decent fit of the excess itself : spectrum measured in 24 energy bins, covariance matrix taken from Calore, Cholis, Weniger (2014). Consider O(10%) additional uncertainty on the spectrum.

 $\cdot$  Take into account astrophysical uncertainties (J-factors/spatial distribution of  $\gamma$ -ray flux) : generalised NFW

$$\rho(r) = \rho_s \left(\frac{r}{r_s}\right)^{-\gamma} \left(1 + \frac{r}{r_s}\right)^{-3+\gamma}$$

Vary central slope around Calore, Cholis, Weniger (2014) best fit values +  $\rho_s$ ,  $r_s$  (correlated, from rotation curves). Consider 40° x 40° regi

Consider  $40^{\circ} \times 40^{\circ}$  region around GC masking inner  $2^{\circ} \times 2^{\circ}$  stripe along GP

Feroz *et al* (2013)

• When working within concrete models (if actually interested in explaining dark matter abundance) : Consider the possibility that we're dealing with a subleading component of dark matter.

 $\cdot$  When working within concrete models : consider all relevant experimental + theoretical constraints.

Global fit, parameter space scanned with MultiNest.

# The CGE in the singlet scalar model

 $\cdot$  A recent attempt to fit the GCE : singlet scalar dark matter model.

Cuocco, Eiteneuer, Heisig, Krämer (2016)

Model – specific constraints :

 $\cdot$  BR(h  $\rightarrow$  inv)

- Direct detection (LUX 2013)
- $\cdot$   $\gamma$ -ray searches in dSphs (Fermi 2015)
- $\cdot$   $\gamma$ -ray line searches at the GC (Fermi 2015)
- Dark matter abundance (Planck 2013)



Fit parameters :

 $\cdot$  2 model parameters

· Dark matter abundance R =  $\rho_{model} / \rho_{DM}$ · J-factor

 $10^{-1}$ 

 $10^{-2}$ 

 $10^{-4}$ 

10

 $10^{0}$ 

10 ಜ

 $\chi^{SH}$  10

# The CGE in the singlet scalar model

 $\cdot$  A recent attempt to fit the GCE : singlet scalar dark matter model.

Cuocco, Eiteneuer, Heisig, Krämer (2016)



Findings :

- $\cdot$  A decent fit of the GCE is possible within the singlet scalar model
- $\cdot$  Dark matter tends to be underabundant

• For not-too underabundant DM, favoured regions clearly concentrated around the Higgs resonance

$$\sigma v \sim \frac{1/m_h^2}{(\delta^2 - v_{\rm rel})^2 - \Gamma_h^2}, \delta^2 \equiv \frac{m_h^2 - 4m_s^2}{m_h^2}$$

*i.e.* substantial velocity dependence of  $\sigma v$ 

# The CGE in the Inert Doublet Model

 $\cdot$  In the IDM, the situation changes quite a bit!

B. Eiteneuer, A. G., J. Heisig, to appear

Differences :

• Included theoretical + oblique parameter constraints With 2HDMC Eriksson, Rathsman, Stal (2009)

 $\cdot$  Included LUX 2016 data



 $2\lambda_L$ 

Findings :

 $\cdot$  A decent fit of the GCE is still possible in the IDM

 $\cdot$  Contrary to the singlet scalar model, in the IDM we can have R = 1 !

 $\cdot$  A new region appears towards the WW\* threshold (2-3 $\sigma$  – compatible)

• Better parameter space coverage on the way

 $10^{-1}$ 

 $10^{-2}$ 

10

10

 $\chi^{T}_{Z}$  10

# Conclusions and outlook

 $\cdot$  The nature of the Galactic Centre Excess remains unclear, especially given the numerous associated astrophysical uncertainties.

 $\cdot$  Dark matter interpretations of the GCE are under pressure but remain attractive.

Or wishful thinking, depending on your perspective!

 $\cdot$  The Inert Doublet Model does provide such an interpretation, whilst being able to explain the dark matter abundance in the Universe. Preferred DM masses around Higgs resonance and/or close to the WW\* threshold (ov velocity-dependent).

• It is also a testable interpretation, through a combination of direct/indirect detection and LHC searches for the heavier  $Z_2^2$  – odd states.

 $\cdot$  Interesting interplay between the IDM GCE intepretation and the LHC!



Thank you!