

Prospects for light WIMP searches with EDELWEISS

Context Present status of EDELWEISS-III Prospects for ~GeV scale masses Prospects for the ⁸B region

> Jules Gascon (IPNLyon, Université Lyon 1 + CNRS/IN2P3)

November 24th, 2016 TeraScale - Low Mass WIMPs with EDELWEISS

Direct searches at low and high masses

Where to hunt?

The GeV region

The ⁸B region

The EDELWEISS Experiment

- Direct detection of WIMPs, germanium target
- 20 kg Ge total, 870g units
 - Ionization + Heat
- Simple & robust design
 - Important for scalability to large arrays
 - Initially designed for >20 GeV WIMP search, extended down to 5 GeV given achieved resolutions

Laboratoire Souterrain de Modane

Deepest in Europe : 5 μ/m²/day

Fully InterDigitized electrode design

- ~870g detectors (ϕ =70 h=40 mm)
- 2 GeNTDs heat sensor per detector
- Electrodes: concentric Al rings
 (2 mm spacing) covering all faces
- XeF₂ surface treatment to ensure low leakage current (<1 fA) between adjacent electrodes

J Low Temp Phys (2014) 176: 182-187

Surface event rejection

Phys Lett B 681 (2009) 305-309

- Bulk event: charges collected by C₁ and C₂: V₁ and V₂ act as veto
- Surface events: charges collected by either C₁V₁ or C₂V₂

EDELWEISS-III 2014-2015 data taking

161 days of physics data with 24 FIDs: >3000 kgd total

 24 FID with good resolutions and threshold > 5 keV_{ee} (performance studies, coincidences)

- 19 FID with > 2 keV_{ee} (used for study of cosmogenics + ³H, etc.)
- 8 lowest threshold FIDs used for low-mass WIMP search

Nuclear recoil calibration + discrimination

Gamma rejection

Surface rejection

• γ rejection factor: < 5.6 x 10⁻⁶

[J Low Temp Phys (2012) 167: 1056-1062]

Updated now to $< 2.5 \times 10^{-6}$ with additional detectors + statistics

Surface evts rejection (²¹⁰Pb+²¹⁰Bi β , ²¹⁰Po α , ²⁰⁶Pb recoils): < 4 x 10⁻⁵

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

Data-driven background models based on sidebands

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

November 24th, 2016

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

- Analysis with Boosted Decision Tree [JCAP05 (2016) 019]
- Analysis with Profile Likelihood [EPJC 76 (2016) 548]

- Improvement by x20 to x150 between 7 and 10
 GeV wrt EDELWEISS-II
- Limited by heat-only background: *identification* and rejection using the σ=230 eV resolution on ionization
- Ionization resolution is key for rejection
- Heat resolution is key for low thresholds

Prospects for GeV-range masses

Heat thresholds can be improved by applying larger bias voltages

- Heat signal boosted by Neganov-Luke effect (~Joule heating, factor [1+V_{bias}/3])
- Loss of ionization-based background discrimination: method benefits low-mass searches only

Prospects for GeV-range masses

Future: reduce backgrounds, increase mass

- EDELWEISS sensitivity for 35 ton.day = 100 kg x 1 year
- Suppression of Heat-Only becomes essential in GeV range
- In 5-20 GeV range, need:
 - Improve ionization resolution (for discrimination) from σ =230 to 100 eV
 - reduction of neutron + bulk electron recoils reduction by /10
 - → achievable in future in SuperCDMS environment planned @SNOLAB

Study implication of
 SuperCDMS tower design
 +HEMT readout on
 EDELWEISS detectors

[J Low Temp Phys

184 (2016) 308 7

- Collaboration on CUTE test facility @SNOLAB
- Study improvement of charge readout with HEMTs

HEMT readout

- High Electron Mobility Transistors [JLTP 176 (2014) 466 and 911; XB+AB NIMA 787 (2015) 51]
 - Low noise, low heat load
 - Can work at 4K: shorter cabling length reduces capacitance & improves ion. $\boldsymbol{\sigma}$
 - Considered by EDW/HARD (reso.) and SuperCDMS (heat load), with joint R&D
- $\sigma = 50 \text{ eV}$ ion. resolution possible with FID + reduced C electrode design

 Reduction by 2 of number of electrodes on FID already done with success (one of the 8 "best" detectors used for WIMP searches!)

Entering the ⁸B region

⁸B region exploration with FID+HEMT

- Separation of ⁸B signal (=6 GeV WIMP, black) with $\sigma_{ion} = 50 \text{ eV}$ (wrt present ~200 eV)
- E resolution: ~10% @ 1 keV_{ee} spectral separation for WIMP searches close to 6 GeV
- Simulated BDT analysis: 78 background-free ⁸B events in 200 kg x 5 years
- 8 in 100 kg x 1 year
 (wrt <3 with σ_{ion}=100 eV)
- Direct measurement of this important + interesting "bkg"

Conclusions

EDELWEISS-III conclusions

- Robust design, good reproducibility of performances
- Improved ionization resolution & thresholds lead to x40 improvement of WIMP sensitivity at ~5-10 GeV wrt EDELWEISS-II.
- Gamma and Surface rejection performances confirmed
- Prospects in the GeV-WIMP range: 2017/18 goal = 10⁻⁴¹ cm²
 - Improve thresholds x10 using boost from 8 to 100V (achieved)
 - Optimize heat resolution
 - Reduce heat-only background
 - 10⁻⁴¹ cm² achievable with present levels for other backgrounds
- Prospects for WIMPs in the ⁸B region
 - 50 eV ionization resolution to obtain pure nuclear recoil sample + 10% resolution on recoil energy: clear spectral identification of $^{8}B_{V}$
 - Use HEMT preamplifier + reduce electrode capacitance (reduction by a factor of 2 of number of electrodes achieved)
 - ~100 kg FIDs at SNOLAB to complement nicely the SuperCDMS-SNOLAB reach

EDELWEISS collaboration

November 24th, 2016

BACKUP

Direct searches at low and high masses

EDELWEISS Setup

Originally dimensioned for ~3000 kgd high-mass WIMP search

- \checkmark Clean Room (Class A: <10000 p/m3) with deradonized air (from 10 Bq/m³ \rightarrow \approx 30 mBq/m³)
- ✓ Active muon veto : 97.7% geometric coverage
 - N^{μ -n} = 0.6 ^{+0.7} _{-0.6} evts (90% CL, 3000kg.d)
- ✓ External PolyEthylen Shielding (n): 50 cm
- ✓ External Lead Shielding (β , γ) : 18 cm + 2cm Roman Lead

- Extra 15 cm Internal Roman Pb (1K)
- Material selection

✓ New w/r to EDW-II :

- Extra 10 cm PE shield below detectors
- NOSV Copper
- New Kapton cables and connectors : 1K-10mK (Steel) and 10mK-10mK (Cu)
- **New electronics** (FETs 100K and Digitization 300K)
- New Cryogenics to reduce microphonics

Nuclear recoil discrimination

- Heat: GeNTD thermistor (~15mm³): R ~MΩ at T= 18 mK, ΔT ~1 µK/keV.
 Fully thermalized: position-independent signal.
- Ionization: evaporated Al electrodes, polarized at a few V/cm
- Ionization yield for nuclear recoils is $\sim 1/3$ of value for e⁻ recoils
- Limitation: poor charge collection for events <<1mm from surface

Electron recoil spectra (... an unfair comparison)

Some electron recoil rates presented at IDM2016

- DAMIC (Liao)
- CDEX (Lin)
- TEXONO (Singh)
- CRESST (Gorla)
- KIMS (Lee)
- CDMS-Lite (Cushman)
- EDELWEISS (Scorza)
- Majorana (Lopez-Asamar)
- Cuore (Piperno)
- XENON, LUX, PandaX: below scale (self-shielding)

What can be done with 1 kgyear

 Calculated assuming present EDELWEISS background (including Heat-only)

Low- vs High-voltage operations

- Threshold (in keV_{ee}) reduced by factor (1+V/3)
- Loss of discrimination (except for heat-only events)

⁸B region with xenon

- Xenon experiments may reach ⁸B floor in coming years
 - Very small efficiency limited by photon collection
 - ⁸B backgrounds difficult to control: very little spectral response

Measurement WITH good energy resolution and background rejection is needed to properly control this background