

Review of ttH searches at ATLAS and CMS

GDR Terascale, LPNHE - 25/11/2016

Nicolas Chanon - IPHC Strasbourg, CNRS/IN2P3 for the ATLAS and CMS Collaboration

ttH production at 13 TeV

Searches for ttH production at the LHC

ttH,H→bb: 58.1%

- High cross section x BR, but multi-jet background
- Difficult tt+bb modeling
- ATLAS : 2015 + 2016 data
- CMS : 2015, 2016 data

ttH,H→γγ : 0.23%

- Clean signature thanks to excellent mass resolution, but small branching ratio
- Background from mass fit in data
- ATLAS : 2015 + 2016 data
- CMS : 2015, 2016 data

ttH multilepton : $H \rightarrow WW$ (21.5%), $H \rightarrow ZZ$ (2.6%) and $H \rightarrow \tau\tau$ (6.3%)

- $H \rightarrow WW$, $H \rightarrow ZZ$ semi-leptonic and leptonic decays
- Lower rate than H→bb, but low background final state (better handle on irreducible backgrounds)
- ATLAS : 2015 + 2016 data
- CMS : 2015 + 2016 data

ATLAS ttH,H→bb **ATLAS-CONF-2016-080**

Selection targeting lepton+jets and dileptons

- **I+jets:** =1 lepton, \geq 5 jets, \geq 3 b-tag
- **2I:** 2 opposite sign lepton, \geq 3 jets, \geq 3 b-tag
- Mass resolution ~10%, jet combinatorics: use **multivariate methods** in jet/b-jet categories

Itt + light Itt + ≥1c Itt + ≥1b

 \geq 4 j, \geq 4 b

tt + V Non-tt

3 j, 3 b

 \geq 4 j, 3 b

ATLAS ttH,H→bb ATLAS-CONF-2016-080

Analysis strategy: two-step multivariate technique

- Reconstruction BDT : Match reconstructed jets to Higgs and top quark jets
- NN/BDT output : includes previous BDT + kinematic variables, in signal region only
- All regions included in final likelihood fit
- $tt+\geq 1b$, $tt+\geq 1c$ normalisations: free param. in the fit

 $\Delta\mu \sim 0.5$, already dominates the measurement

CMS ttH,H→bb CMS HIG-16-038

NEW $g \ 0000000 \qquad t \qquad e^+, \mu^+$ $W^+ \qquad v_e, v_\mu$ $g \ 0000000 \qquad W^- \qquad \overline{q}'$ $\overline{t} \qquad \overline{b}$ \overline{b} \overline{b}

Analysis targeting lepton+jets and dileptons

- **I+jets:** =1 lepton, \geq 4 jets, \geq 3 b-tag
- **2I:** 2 opposite sign lepton, \geq 3 jets, \geq 3 b-tag

Change relative to Moriond 2016 (2.3 fb-1):

- Remove low significance categories
- Use Matrix Element Method (MEM) as final discriminant in low/high BDT score categories

≥ 6 jets, 3 b-tags

BD)

s/B=0.011, s/\B=0.430

Best fit $\mu = \sigma/\sigma_{_{SM}}$ at $m_{_{H}} = 125 \text{ GeV}$

CMS ttH multilepton CMS HIG-16-022

 W^{-}

W

W

12.9 fb⁻¹ (13 TeV)

Pre-fit, μ=

+ Data ■ttH

Η

g 000000

Events

160

140

CMS Preliminary

Targeting 2 lepton same-sign (2lss) and ≥3 leptons (3l)

- 2 same sign leptons: ≥4 jets, ≥1 b-tag
- **3 leptons:** ≥ 2 jets, ≥ 1 b-tag
- Backrounds: tt+W/Z, tt+jets (same-sign required to reduce Drell-Yan and ttZ)
- Background normalisation from control region: loosened identification (fakes), Z→II (mis-charge = "flips", 2lss only)

CMS ttH multilepton CMS HIG-16-022

Analysis sensitivity:

2lss and 3l categories: Train 2

BDTs, against ttbar and ttW/Z

- Unroll 2D distributions
- 3I category : include log of MEM weights for ttH, ttW and ttZ as ttV

CMS ttH multilepton CMS HIG-16-022

- Main systematics uncertainties : tight lepton selection and fakes

Category	Obs. limit	Exp. limit $\pm 1\sigma$	Best fit $\mu \pm 1\sigma$
Same-sign dileptons	4.6	$1.7^{+0.9}_{-0.5}$	$2.7^{+1.1}_{-1.0}$
Trileptons	3.7	$2.3^{+1.2}_{-0.7}$	$1.3^{+1.2}_{-1.0}$
Combined categories	3.9	$1.4^{+0.7}_{-0.4}$	$2.3^{+0.9}_{-0.8}$
Combined with 2015 data	3.4	$1.3^{+0.6}_{-0.4}$	$2.0^{+0.8}_{-0.7}$

ATLAS-CONF-2016-058

ATLAS analysis: 4 channels

- **2I same sign (ee, eµ, µµ), no τ had:** ≥5 jets, ≥1 b-tag
- 2I same sign, 1 т had : ≥4 jets, ≥1 b-tag
- **3I:** \geq 4 jets, \geq 1 b-tag ; or \geq 3 jets, \geq 2 b-tag
- **4I:** ≥2 jets, ≥1 b-tag
- Similar method to CMS for background measurement
- Fake τ from simulation, normalised to control region
- Main systematic uncertainties : Fakes and flips $\Delta\mu{\sim}0.6$

ATLAS, CMS H→γγ analysis ATLAS-CONF-2016-067, CMS HIG-16-020

CMS ttH,H→γγ CMS HIG-16-020

2 ttH categories: hadronic and leptonic

- Tighten photon pT/m requirement relative to inclusive categories (targeting ggh production)
- Control region with inverted photonId is used to predict expected background for optimisation

→ µ_{vH}=1 → **ttH h** lepto

12.9 fb⁻¹ (13 TeV)

Combined $\pm 1\sigma$

α=μ_{SM}

m_н Profiled

 $\widehat{\boldsymbol{\mu}}_{\text{combined}}$ = 0.95 $^{+0.21}_{-0.18}$

Per category $\pm 1\sigma$

• **ttH** hadronic/leptonic combined: **µ=1.9**^{+1.5}-1.2</sub>

CMS Preliminary

0.77 +0.25

1.61 +0.9

1.91^{+1.5}

 μ_{ggH}

 μ_{VBF}

 $\mu_{\mu\mu}$

 Measurement is dominated by statistical uncertainties

$\begin{array}{c|c} & \textbf{ttH hadronic tag: 0} \\ & \text{lepton, } \geq 5 \text{ jets, } \geq 1 \text{ b-tag} \\ \\ \textbf{CMS } Preliminary & 12.9 \text{ fb}^{-1}(13 \text{ TeV}) \end{array}$

ttH leptonic tag: ≥1

ATLAS ttH, $H \rightarrow yy$ ATLAS-CONF-2016-067

2 ttH categories: hadronic and leptonic

- Control region with inverted photonId
 - ttH hadronic/leptonic combined: µ=-0.25+1.26-0.99 measured simultaneously with other production mechanisms (ratio WH/ZH assumed as SM) - Measurement is dominated by statistical

uncertainties

Data

Backgrourd Fit

Signal + Eackground Fit

SM Signa + Backgound

120

130

Events / GeV

10

6

110

ttH summary and projections

- ttH, **H→bb** (2016): μ=-0.19^{+0.8}-₀.8

- ttH multilepton (2015+2016): μ=2.0^{+0.8}-0.7

- ttH, **H**→γγ (2016): μ=1.9^{+1.5}-1.2

Projections at HL-LHC L=3000 fb⁻¹

CMS-NOTE-13-002

- Extrapolated from 8 TeV first measurements, same syst.
- $\Delta \kappa_t / \kappa_t$: from $H \rightarrow \gamma \gamma$ and $H \rightarrow bb$: 10% (7% if half theory uncert.)

ATLAS PHYS-PUB-2014-012

- ttH,H \rightarrow $\gamma\gamma$ 1I,2I only, same extrapolation
- Similar experimental sensitivity

CMS expected precision on top - Higgs coupling (%)

L (fb ⁻¹)	- κ _γ	κ _W	κ _Z	κg	κ _b	κ _t	κ_{τ}	$\kappa_{Z\gamma}$	$\kappa_{\mu\mu}$	BR _{SM}
300	[5, 7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]	[41, 41]	[23, 23]	[14, 18]
3000	[2, 5]	[2, 5]	[2, 4]	[3, 5]	[4, 7]	[7, 10]	[2, 5]	[10, 12]	[8, 8]	[7, 11]

ATLAS expected precision on ttH signal strength (%)

Δu/u∝2Δk	$\Delta \hat{\mu}/\hat{\mu}$ (%)				
ion	Production mode	Total	Statistical	Experimental	Theoretical
-	tīH	+21 -17	+13 -12	+5 -4	+17 -11
· _					

Conclusions

ttH production

- Results are consistent with Run I
- Sensitivity is already comparable or slightly better than Run I
- Able to reach ~40% precision on ttH signal strength with ATLAS and CMS 2015+2016 data,
- More data is needed to evaluate if the Run I "μ~2 excess" (though compatible with SM) is not a fluctuation.

Back-up slides

CMS ttH,H→bb CMS HIG-16-038

Most sensitive channel : 6 jets, 3 b

			Process	tīt rate up/down [%]	tīH rate up/down [%]
			Jet energy scale	+12.6/-11.8	+8.4/-8.0
			Jet energy resolution	+0.2/-0.3	-0.0/-0.1
			Pile-up	+0.1/-0.1	-0.2/+0.1
	01 1	T , 1	⁼ Electron efficiency	+0.5/-0.5	+0.5/-0.5
Category	Observed	Expected	Muon efficiency	+0.4/-0.4	+0.4/-0.4
	46.0	$53.0^{+26.0}_{-17.0}$	 Electron trigger efficiency 	+1.2/-1.2	+1.3/-1.3
4 jets, 4 b-tags (low BD1)	46.9		Muon trigger efficiency	+0.8/-0.8	+0.9/-0.9
A ista A la taga (laigh DDT)	12.8	$13.9\substack{+6.6 \\ -4.1}$	b-Tag HF contamination	-9.4/+9.8	-2.6/+2.8
4 jets, 4 D-tags (nigh DD1)			b-Tag HF stats (linear)	-3.1/+3.3	-2.5/+2.7
5 jets, \geq 4 b-tags (low BDT)	20.0	$17.2\substack{+8.3 \\ -5.3}$	b-Tag HF stats (quadratic)	+2.6/-2.4	+2.4/-2.2
			b-Tag LF contamination	+7.1/-5.2	+5.8/-4.5
5 jets > 4 b-tags (high BDT)	6.0	$6.1^{+3.0}_{-1.8}$	b-Tag LF stats (linear)	-2.0/+4.4	+0.5/+1.5
5 Jets, ≥ 4 b-tags (flight DD1)			b-Tag LF stats (quadratic)	+2.1/+0.2	+1.5/+0.5
> 6 jets, 3 b-tags (low BDT)	12.1	$18.1\substack{+8.0 \\ -5.2}$	b-Tag charm Uncertainty (linear)	-11.1/+14.9	-3.1/+4.1
$= 0 \operatorname{jets} = 0 \operatorname{table} (10 \operatorname{tr} 22 \operatorname{tr})$			b-Tag charm Uncertainty (quadratic)	+0.5/-0.5	-0.0/+0.0
> 6 jets, 3 b-tags (high BDT)	5.8	$7.7^{+3.5}_{-2.3}$	Q^2 scale (tt+LF)	-6.2/+7.5	—
			Q^2 scale (tt+b)	-1.7/+2.0	—
\geq 6 jets, \geq 4 b-tags (low BDT)	9.6	$9.4^{+4.5}_{-2.9}$	Q^2 scale (tt+2b)	-1.1/+1.4	—
			Q^2 scale (tt+bb)	-2.0/+2.5	—
\geq 6 jets, \geq 4 b-tags (high BDT)	6.1	$4.3^{+2.1}_{-1.3}$	Q^2 scale (tt+cc)	-4.3/+5.4	—
		1.5	- PS scale (tī+LF)	+4.8/-9.0	—
lepton+jets combined	1.8	$2.1^{+1.0}_{-0.6}$	PS scale (tī+b)	-0.9/+0.7	—
			= PS scale ($t\bar{t}+2b$)	-0.8/+0.9	—
			PS scale (tī+bb)	-1.5/+2.7	—
			PS scale (tī+cī)	-3.9/+3.0	_

CMS TOP-16-017

- Background to ttH multi lepton searches
- At 13 TeV, cross section ~x4 relative to 8 TeV
- ttW with 2lss: BDT using event kinematics: **3.9** (2.60) observed (expected)
- ttZ with 3I,4I : counting events classified by jets/b-jets multiplicity: 4.6σ (5.8σ)

Total $\mu^+\mu^+$ μ^+e^+ e^+e^+ $\mu^-\mu^ \mu^-e^ e^-e^-$

ATLAS arXiv:1609.01599

- ttW with 2lss (dimuon only), 3l: 2.2σ (1.0σ) observed (expected)
- ttZ with 3I (on-Z region included),4I : counting events classified by jets/b-jets multiplicity: 3.9σ (3.4σ)

Events