
Tools and methods for
quarkonium physics

J.P. Lansberg�

IPN Orsay – Paris-Sud U. –CNRS/IN2P3 – Université Paris-Saclay
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Introduction
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Approaches to Quarkonium Production

See EPJC (2016) 76:107 for a recent review

Quarkonia are bound states of heavy quarks (cc̄, bb̄, bc̄ and b̄c)
Nearly all approaches assume a factorisation between the production of the
heavy-quark pair, QQ̄, and its hadronisation into a meson

Di�erent approaches di�er essentially in the treatment of the hadronisation
3 fashionable models:

1 Colour Evaporation Model: application of quark-hadron duality;
only the invariant mass matters

2 Colour Singlet Model: hadronisation without gluon emission
each emission costs αs�mQ� and occurs at short distances

3 Colour Octet Mechanism (encapsulated in NRQCD): higher Fock states of
the mesons taken into account; QQ̄ can be produced in octet states with
di�erent quantum # as the meson
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CEM vs. CSM vs. COM

1 Colour Evaporation Model
any QQ̄ state contributes to a speci�c quarkonium state
colourless �nal state via a simple 1/8 factor
one non-pertubative parameter per meson, supposedly universal

2 Colour Singlet Model
colourless �nal state via colour projection; quantum numbers enforced by spin

projection
one non-pertubative parameter per meson but equal to

the Schrödinger wave function at the origin
this parameter is �xed by the decay width or potential models and

by heavy-quark spin symmetry (HQSS)
3 Colour Octet Mechanism
one non-perturbative parameter per Fock States
expansion in v2; series can be truncated
the phenomenology partly depends on this
HQSS relates some non-perturbative parameters to each others and

to a speci�c quarkonium polarisation
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Public multi-process matrix-element/event  Generators  

• Alpgen 

• MG5/ME5 

• HELAC-PHEGAS 

• Sherpa ... 

without onia 

LO 

NLO 
• MG5_aMC 

• HELAC-NLO 

• GoSam 

• OpenLoops, Recola ... 

with onia 

LO 
• MadOnia 

• HELAC-Onia 

• ... 

NLO 
• ??? 

 

Mangano, Moretti, Piccinini, Pittau, Polosa 

Alwall, Herquet, Maltoni, Mattelaer, Stelzer 

Cafarella, Kanaki, Papadopoulos, Worek 

Gleisberg, Hoche, Krauss, Schaelicke, Schumann, 
Winter 

Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer , 
Shao, Stelzer, Torrielli, Zaro 

Bevilacqua, Czakon, Garzelli, Hameren, Kardos, 
Papadopoulos, Pittau, Worek 

Cullen, Greiner, Heinrich, Luisoni, Mastrolia, 
Ossola, Reiter, Tramontano 

Artoisenet, Maltoni, Stelzer 

Shao 

Single process; not automatised 
• BcVEGPY (for B(c)) 

• FDC (NLO) 

 

Chang, Wang (XG),… 

Wang (JX),… 
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What for : new observables

Observables Experiments CSM CEM NRQCD Interest 
J/ψ+J/ψ LHCb, CMS, ATLAS, 

D0 (+NA3) 
NLO, 
NNLO* 

LO ? LO Prod. Mechanism (CS 
dominant) + DPS 

J/ψ+D LHCb LO LO ? LO Prod. Mechanism  (c to J/psi 
fragmentation) + DPS 

J/ψ+ϒ D0 (N)LO LO ? LO Prod. Mechanism (CO 
dominant) + DPS 

J/ψ+hadron STAR LO -- LO  B feed-down; Singlet vs Octet 
radiation 

J/ψ+Z ATLAS NLO NLO Partial 
NLO 

Prod. Mechanism + DPS 

J/ψ+W ATLAS LO LO ? Partial 
NLO 

Prod. Mechanism (CO 
dominant) + DPS 

J/ψ vs mult. ALICE,CMS (+UA1) -- -- -- 

J/ψ+b -- (LHCb, D0, CMS 
?) 

-- -- LO Prod. Mechanism (CO 
dominant) + DPS 

ϒ+D LHCb LO LO ? LO DPS 
ϒ+γ --  NLO, 

NNLO* 
LO ? LO Prod. Mechanism (CO LDME 

mix) + gluon TMD/PDF  
ϒ vs mult. CMS -- -- -- 
ϒ+Z -- NLO LO ? LO Prod. Mechanism + DPS 
ϒ+ϒ CMS NLO ? LO ? LO ? Prod. Mechanism (CS 

dominant ?) + DPS 
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Part II

MadOnia†

†Most slides from a presentation by P. Artoisenet
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MadOnia
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MadOnia

Introduction: the purpose of MadOnia

expression of cross sections within NRQCD:

σ(ij → Q + X) =
∑

n

σ̂(ij → QQ̄(n) + X)〈OQ(n)〉Λ

〈OQ(n)〉 is the long distance matrix element

σ̂(i + j → QQ̄(n) + X) is the short distance cross section

MadOnia: automatic tree-level computation of σ̂(ij → QQ̄(n) + X)

Q

Q̄

(1)

QQ̄
“

2S+1L
[c]
J

, v
”

(2)

∫
dφ

(3)

2
(1) open quark amplitude

(MadGraph)

(2) projected amplitude
(MadOnia)

(3) phase-space integration
(unweighting→ MC event generator)

Implementation of Quarkonium Production cross sections within Madgraph – p.
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MadOnia

Capabilities and Validation

validation:

gauge invariance has been checked

charge conjugation conservation:

A(1S
[1]
0 + (2k + 1)γ) = 0

A(3S
[1]
1 + (2k)γ) = 0

A(1P
[1]
1 + (2k)γ) = 0

A(3P
[1]
1 + (2k)γ) = 0

A(3P
[1]
0,2 + (2k + 1)γ) = 0

comparison with analytical amplitudes point by point in the phase space

ij → Qk

with i, j, k = quarks or gluons, for all S- and P-wave states, colour-singlet

and colour-octet transitions
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MadOnia

Illustration
example: Bc production from e

+
e
−

enter the process: fill the input file proc_card.dat
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MadOnia

Illustration
example: Bc production from e+e−

Output:

MadOnia generates a fortran code that gives the squared matrix element

summed/averaged over polarization degrees of freedom at an arbitrary

phase-space point:

1

4

∑

λ1,...,λ5

|M(e+(p1)e
−(p2) → b(p3)c̄(p4)Bc(p5))|

2

Implementation of Quarkonium Production cross sections within Madgraph – p.J.P. Lansberg (IPNO) Tools and methods for quarkonium physics November 24, 2016 12 / 38



MadOnia

Illustration
interface with a phase-space generator to produce cross sections

Bc production via colour-singlet transitions (σ in fb)
1S0[1] 3S1[1] 1P1[1] 3P0[1] 3P1[1] 3P2[1]

e+e−@mZ 1.58 103 2.25 103 1.72 102 1.00 102 2.09 102 2.25 102

γγ@LEP II 0.513 5.17 0.160 2.66 10−2 5.74 10−2 0.263

γp@HERA 356 1.17 103 83.1 21.2 50.4 197

pp@LHC 3.93 107 9.82 107 5.21 106 1.79 106 4.40 106 1.06 107

pp̄@Tev II 2.54 106 6.47 106 3.29 105 1.24 105 2.87 105 6.81 105

Bc production via colour-octet transitions (σ in fb)
1S0[8] 3S1[8] 1P1[8] 3P0[8] 3P1[8] 3P2[8]

e+e− 1.64 2.31 0.162 0.105 0.217 0.235

γγ 5.38 10−4 5.42 10−3 1.69 10−4 2.83 10−5 6.04 10−5 2.77 10−4

γp 1.15 8.25 0.494 7.45 10−2 0.238 1.57

pp 4.20 105 1.88 106 1.19 105 1.37 104 6.20 104 2.24 105

pp̄ 2.86 104 1.27 105 8.13 103 9.82 102 4.24 103 1.56 104

TIMING: 5’ to enter all processes in the input card, 2 hours of run

Implementation of Quarkonium Production cross sections within Madgraph – p.J.P. Lansberg (IPNO) Tools and methods for quarkonium physics November 24, 2016 13 / 38



MadOnia
Current studies:

Υ + 3 jets production at the Tevatron

subprocesses:

≈ 2000 Feynman diagrams (reduced by a factor 1

4
after the colour and spin projection are

applied)

Implementation of Quarkonium Production cross sections within Madgraph – p.
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MadOnia
Current studies:

J/ψ production from γγ collisions (Lep II,
√
s = 196 GeV)

γγ → gJ/ψ(3S1[8]) v.s. γγ → gggJ/ψ(3S1[1])

↓ ↓
J/ψ

J/ψ

6 Feynman diagrams 120 Feynman diagrams

Implementation of Quarkonium Production cross sections within Madgraph – p. 1
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MadOnia
Current studies:

e+e− → ηc +X @ 10.6 GeV

subprocesses:

e+e− → ηcqq̄g e+e− → ηcggg e+e− → ηccc̄

c̄

c

ηc

u

e
+

e
−

ū

e
−

e
+

c

ηc

c̄

e
−

e
+

ηc
c

c

c̄

c̄

σ(ηccc̄) = 58.7 fb

σ(ηcggg) = 3.72 fb

σ(ηcgqq̄) = 1.63 fb

Remarks:

σ(J/ψcc̄) = 148 fb

σ(J/ψgg) = 266 fb

Implementation of Quarkonium Production cross sections within Madgraph – p. 1
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MadOnia

Summary about MadOnia

Possibility to look at the quarkonium polarisation

Possibility to generate LHE �les (� Pythia)

Interfaced with LHAPDF

Tuned version to compute NNLO� cross sections

Possibility to include photon 
uxes from ion collisions

Available in MG4 (not anymore via the web interface, it seems)
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Part III

HELAC-Onia
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HELAC-Onia
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HELAC-Onia

A few keywords

One or more S- and P-wave onium tree-level helicity amplitude in NRQCD

Color: octet and singlet

Currently restricted to SM: possible for BSM extension

Unique opportunity to produce multiple onia

Event generation

Yields and polarisations

Spin-entangled decays

Interface to parton shower Monte Carlo programs

Automatically take into account multiple transitions

Proton-nucleus collisions

J.P. Lansberg (IPNO) Tools and methods for quarkonium physics November 24, 2016 25 / 38



HELAC-Onia

14 

New developments in version 2.0 

• More user-friendly interface 

MadGraph5_aMC@NLO HELAC-Onia 2.0 

./bin/mg5 
 
> generate p p > t t~ [QCD] 
 
> output pp2ttx 
 
> launch 

Alwall, Frederix, Frixione, Hirschi, Maltoni, 
Mattelaer, HSS, Stelzer, Torrielli, Zaro (2014) 

./ho_cluster 
 
> generate p p > psi psi 
 
> launch 
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HELAC-Onia
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HELAC-Onia

17 

NEW DEVELOPMENTS IN VERSION 2.0 

• Analysis module 

• Generating topdrawer, gnuplot, root files on the fly.  One-
dimensional or two-dimensional distributions. 

• Reweighting method is applied to estimate scale and PDF 
uncertainties on the fly. 

• Addon codes 

• Double parton scattering for J/� pair production:            
        2 scatterings at a time 

• Planned : 

• Fragmentation function module 

• TMD module etc 
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HELAC-Onia
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HELAC-Onia

Summary about HELAC-Onia

HELAC-Onia is an user-friendly public tool to study heavy quarkonium
physics in an automatic way.
Based on recursion relations, it can be employed for high-multiplicity
processes with a reduced computational cost.
It provides a simulation tool for one or more S-wave and/or P-wave heavy
quarkonia production based on tree-level helicity amplitudes.
To do:

Ongoing developments to meet various application purposes.
Generalise to higher-order (e.g. NLO QCD correction).
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Part IV

A trick to move to NLO accuracy
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MG5aMC@NLO & CEM

Trick: In the CEM (quark-hadron duality), the quarkonium cross sections are
proportional to those of heavy-
avour-pair production up to amaximum
invariant massmQQ̄ � 2mD (ormB)
Nota: also works with some slight tunes of MCFM.
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MG5aMC@NLO & CEM

QCD corrections to the CEM PT dependence
JPL, H.S. Shao JHEP 1610 (2016) 153

State of the art computation:
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MG5aMC@NLO & CEM

QCD corrections to the CEM PT dependence
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MG5aMC@NLO & CEM

QCD corrections to the Z � J~ψ
JPL, H.S. Shao JHEP 1610 (2016) 153

LO was not even known:
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Prompt J/ψ+Z production at 8 TeV LHC
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Homework: Pick up you preferred (SM or BSM) particle and compute the
associated production x-section with a J~ψ in the CEM.
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Part V

Conclusion and outlooks
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Conclusion and outlooks

Need for automated tools for tedious quarkonium-related computations

Need reinforced by numerous recent experimental studies at the LHC

Two automated tools on the market: MadOnia and HELAC-Onia

HELAC-Onia: maintained and developped

First NLO evaluations with unautomatised tools

or with the CEM (but with caveats with regards the physics)

a NLO tool still to be devised (with octet + polarisation)
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