GDR TERASCALE Avoiding the Goldstone Boson Catastrophe in general renormalisable field theories at two loops

> Johannes BRAATHEN in collaboration with Dr. Mark GOODSELL arXiv:1609.06977, to appear in JHEP

Laboratoire de Physique Théorique et Hautes Énergies

November 24, 2016

The context

Going Beyond the Standard Model

- 2012: discovery of a SM-Higgs-like particle by ATLAS and CMS
- No Physics beyond the SM found yet
- \Rightarrow properties of the Higgs as a probe for new Physics \rightarrow Higgs mass m_h^2
 - A tool to compute the Higgs mass ightarrow effective potential $V_{
 m eff}$

State of the art

- SM: V_{eff} (relates $m_h^2 \leftrightarrow \lambda$) is known to full 2-loop (*Ford, Jack and Jones '92*) + leading QCD 3-loop and 4-loop (*Martin '13, Martin '15*)
- Some results for m_h² in specific SUSY theories: MSSM (leading SQCD 3-loop order); NMSSM (2-loop); Dirac Gaugino models (leading SQCD 2-loop: J.B., Goodsell, Slavich '16)
- Generic theories: V_{eff} computed to 2-loop (Martin '01), tadpoles and scalar masses (in gaugeless limit) implemented in SARAH (*Goodsell, Nickel, Staub '15*)

The effective potential

 $V_{\rm eff} = V^{(0)} + {\rm quantum\ corrections}$

• Quantum corrections = 1PI vacuum graphs computed loop by loop

- Expressed as a function of running tree-level masses of particles, in some minimal substraction scheme ($\overline{\mathrm{MS}}$, $\overline{\mathrm{DR}}'$, etc.)
- First derivative of V_{eff}: tadpole equation (↔ minimum condition), relates vev and mass-squared parameters

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

 Second derivative: same as self-energy diagrams, but with zero external momentum → approximate scalar masses

The Goldstone Boson Catastrophe

- Beyond one loop, V_{eff} only computed in Landau gauge \Rightarrow Goldstones are treated as actual massless bosons *i.e.* $(m_G^2)^{\text{OS}} = 0$
- By **choice** (simplicity) V_{eff} is computed with running masses:

$$(m_G^2)^{\text{run.}} = (m_G^2)^{\text{OS}} - \Pi_G((m_G^2)^{\text{OS}}) = -\Pi_G(0),$$

where Π_G is the Goldstone self-energy

- Under RG flow, $(m_G^2)^{\text{run.}}$ may
 - ightarrow become 0 \Rightarrow infrared divergence in $V_{
 m eff}$
 - $\rightarrow\,$ change sign $\Rightarrow\,$ imaginary part in $\,V_{\rm eff}$

\equiv Goldstone boson catastrophe

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Illustration: the abelian Goldstone model

• 1 complex scalar $\phi = \frac{1}{\sqrt{2}}(v + h + iG)$, no gauge group and only a potential

$$V^{(0)} = \mu^2 |\phi|^2 + \lambda |\phi|^4$$

v: true vev, to all orders in perturbation theory (PT)

- SM: $G^+,~G^0$ Goldstones do not mix, and can be treated separetely \rightarrow this model captures the behaviour of the GBC in the SM
- V_{eff} at 2-loop order:

$$V_{\text{eff}} = V^{(0)} + \underbrace{\frac{1}{16\pi^2} \left[f(m_h^2) + f(m_G^2) \right]}_{1 \text{-loop}} + \underbrace{\frac{1}{(16^2)^2} \left[\lambda \left(\frac{3}{4} A(m_G^2)^2 + \frac{1}{2} A(m_G^2) A(m_h^2) \right) - \lambda^2 v^2 l(m_h^2, m_G^2, m_G^2) + \underbrace{\cdots}_{1} \right]}_{2 \text{-loop}} + \mathcal{O}(3 \text{-loop})$$
where $f(x) = \frac{x^2}{4} (\log x/Q^2 - 3/2), A(x) = x(\log x/Q^2 - 1) \text{ and } I \propto \bigcirc$
Tree-level masses: $m_h^2 = \mu^2 + 3\lambda v^2, m_G^2 = \mu^2 + \lambda v^2$

Illustration: the abelian Goldstone model

Tree-level tadpole

$$\left. \frac{\partial V^{(0)}}{\partial h} \right|_{h=0,G=0} = 0 = \mu^2 v + \lambda v^3 = m_G^2 v$$

Loop-corrected tadpole

$$\frac{\partial V_{\text{eff}}}{\partial h}\Big|_{h=0,G=0} = 0 = m_G^2 v + \underbrace{\frac{\lambda v}{16\pi^2} \left[3A(m_h^2) + A(m_G^2) \right]}_{\text{1-loop}} + \underbrace{\frac{\log \frac{m_G^2}{Q^2}}{(16^2)^2} \left[3\lambda^2 v A(m_G^2) + \frac{4\lambda^3 v^3}{m_h^2} A(m_h^2) \right] + \underbrace{\frac{\log \frac{m_G^2}{Q^2}}{(16^2)^2} \left[3\lambda^2 v A(m_G^2) + \frac{4\lambda^3 v^3}{m_h^2} A(m_h^2) \right]}_{\text{2-loop}} + \mathcal{O}(3\text{-loop})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Illustration: the abelian Goldstone model

Tree-level tadpole equation

$$\frac{\partial V^{(0)}}{\partial h}\bigg|_{h=0,G=0} = 0 = \mu^2 v + \lambda v^3 = m_G^2 v$$

Loop-corrected tadpole equation

$$\frac{\partial V_{\text{eff}}}{\partial h}\Big|_{h=0,G=0} = 0 = m_G^2 v + \underbrace{\frac{\lambda v}{16\pi^2} \left[3A(m_h^2) + A(m_G^2) \right]}_{1-\text{loop}} + \underbrace{\frac{\partial V_{\text{eff}}}{\partial h}}_{\frac{\log \frac{m_G^2}{Q^2}}{(16^2)^2} \left[3\lambda^2 v A(m_G^2) + \frac{4\lambda^3 v^3}{m_h^2} A(m_h^2) \right] + \underbrace{\frac{\partial V_{\text{eff}}}{\partial h}}_{2-\text{loop}} + \mathcal{O}(3-\text{loop})$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

First approaches to the GBC

By hand

- $\triangleright\,$ if $m_G^2 < 0,$ drop the imaginary part of $V_{\rm eff}$
- ▷ tune the renormalisation scale Q to ensure $m_G^2 > 0$ (and even m_G^2 not too small)
 - \Rightarrow may be impossible to achieve and is completely ad hoc

In automated codes (SARAH)

- For SUSY theories only
- Rely on the gauge-coupling dependent part of $V^{(0)}$
 - $\rightarrow \text{ minimize full } V_{\rm eff} = V^{(0)} + \tfrac{1}{16\pi^2} V^{(1)} + \tfrac{1}{(16\pi^2)^2} V^{(2)}|_{\rm gaugeless}$
 - \rightarrow compute tree-level masses with $V^{(0)}|_{gaugeless}$ (= turn off the *D*-term potential)
 - ightarrow yields a fake Goldstone mass of order $\mathcal{O}(m_{EW}^2)$ \Rightarrow no GBC

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Resummation of the Goldstone contribution

SM: Martin 1406.2355; Ellias-Miro, Espinosa, Konstandin 1406.2652. **MSSM**: Kumar, Martin 1605.02059.

[Adapted from arXiv:1406.2652]

- Power counting → most divergent contribution to V_{eff} at ℓ-loop = ring of ℓ − 1 Goldstone propagators and ℓ − 1 insertions of 1PI subdiagrams Π_g involving **only** heavy particles
- Π_g obtained from Π_G , Goldstone self-energy, by removing "soft" Goldstone terms
- Resumming Goldstone rings \Leftrightarrow shifting the Goldstone tree-level mass by Π_g in the 1-loop Goldstone term

$$\hat{V}_{\text{eff}} = V_{\text{eff}} + \frac{1}{16\pi^2} \left[f(m_G^2 + \Pi_g) - \sum_{n=0}^{\ell-1} \frac{(\Pi_g)^n}{n!} \left(\frac{d}{dm_G^2} \right)^n f(m_G^2) \right]$$

 \rightarrow $\ell\text{-loop}$ resummed \textit{V}_{eff} free of leading Goldstone boson catastrophe

Extending the resummation to generic theories arXiv:1609.06977

Generic theories: J.B., Goodsell arXiv:1609.06977

Real scalar fields $\varphi_i^0 = v_i + \phi_i^0$, where v_i are the vevs to all order in **PT**

$$V^{(0)}(\{\varphi_i^0\}) = V^{(0)}(v_i) + \frac{1}{2}m_{0,ij}^2\phi_i^0\phi_j^0 + \frac{1}{6}\hat{\lambda}_0^{ijk}\phi_i^0\phi_j^0\phi_k^0 + \frac{1}{24}\hat{\lambda}_0^{ijkl}\phi_i^0\phi_j^0\phi_k^0\phi_l^0$$

 $m_{0,ij}^2$ solution of the tree-level tadpole equation To work in minimum of loop-corrected $V_{\text{eff}} \rightarrow$ new couplings m_{ij}^2 Diagonalise to work with mass eigenstates in both bases $(\phi_i^0, m_{0,ij}^2) \stackrel{\phi_i^0 = \tilde{R}_{ij}\tilde{\phi}_j}{\longrightarrow} (\tilde{\phi}_i, \tilde{m}_i) \text{ (no loop corrections)}$

 $(\phi_i^0, m_{jj}^2) \stackrel{\phi_i^0 = R_{ij}\phi_j}{\longrightarrow} (\phi_i, m_i)$ (with loop corrections)

Single out the Goldstone boson(s), index G, G', ... and its/their mass(es)

$$m_G^2 = -\sum_i \frac{1}{v_i} (\tilde{R}_{iG})^2 \left. \frac{\partial (V_{\text{eff}} - V^{(0)})}{\partial \phi_i^0} \right|_{\phi_i^0 = 0} = \mathcal{O}(1\text{-loop})$$

Our solution: setting the Goldstone boson on-shell arXiv:1609.06977

Issues with the resummation

- ▶ taking derivatives of \hat{V}_{eff} can be very difficult (involves derivatives of the rotation matrices, etc.) → in practice resummation was **only** used to find the **tadpole equations**.
- the choice of "soft" Goldstone terms to remove from Π_G to find Π_g may be ambiguous and it is difficult to justify which terms to keep

Setting the Goldstone boson on-shell

• Adopt an on-shell scheme for the Goldstone(s): replace $(m_G^2)^{\text{run.}}$ by $(m_G^2)^{\text{OS}}(=0)$ and $\Pi_G(0)$

$$(m_G^2)^{
m run.} = (m_G^2)^{
m OS} - \Pi_G((m_G^2)^{
m OS}) = -\Pi_G(0)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• This can be done **directly** in the tadpole equations or mass diagrams!

Canceling the IR divergences in the tadpole equations $_{\mbox{\tiny arXiv:1609.06977}}$

2-loop tadpole diagrams involving scalars only:

The GBC also appears in diagrams with scalars and fermions or gauge bosons, and is cured with the same procedure \rightarrow we present the purely scalar case.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Canceling the IR divergences in the tadpole equations $_{\mbox{\tiny arXiv:1609.06977}}$

2-loop tadpole diagrams involving scalars only:

Some diagrams of T_{SS} and T_{SSSS} topologies diverge for $m_G^2
ightarrow 0$

・ロト・西ト・西ト・西ト・日・ シック

Canceling the IR divergences in the tadpole equations arXiv:1609.06977

What happens when setting the Goldstone on-shell?

• Contribution of the Goldstone(s) to the 1-loop tadpole:

$$T_S \supset -- \left\{ \sum_{G \in \mathcal{G}} \right\} \propto A(m_G^2) = m_G^2 \left(\log \frac{m_G^2}{Q^2} - 1 \right)$$

• At 1-loop order the scalar-only diagrams in $\Pi_G(0)$ are

$$(m_G^2)^{\text{run.}} = \underbrace{(m_G^2)^{\text{OS}}}_{=0} - \overset{\rho^2 = 0}{\overset{\sigma}{_{\mathbf{G}}}} - \overset{\rho^2 = 0}{\overset{\sigma}{_{\mathbf{G}}}} - \overset{\rho^2 = 0}{\overset{\sigma}{_{\mathbf{G}}}} + \cdots$$

• Shifting m_G^2 by a 1-loop quantity, $\Pi_G(0)$, in the 1-loop tadpole

 \Rightarrow 2-loop shift !

Canceling the IR divergences in the tadpole equations $_{\mbox{\tiny arXiv:1609.06977}}$

2-loop divergent tadpole diagrams

▶ shifting the Goldstone term in the 1-loop tadpole T_S

 \Rightarrow the divergent parts from the diagrams and the shift will cancel out!

・ロト ・ 同ト ・ ヨト ・ ヨト

Canceling the IR divergences in the mass diagrams $_{\mbox{\tiny arXiv:1609.06977}}$

- > Earlier literature: inclusion of momentum cures all the IR divergences
- ▷ We found
 - \Rightarrow true at 1-loop order

 \Rightarrow at 2-loop, \exists diagrams that still diverge for $m_G^2 \to 0$ even with external momentum included

Canceling the IR divergences in the mass diagrams $_{\mbox{\tiny arXiv:1609.06977}}$

- > Earlier literature: inclusion of momentum cures all the IR divergences
- ▷ We found
 - \Rightarrow true at 1-loop order

 \Rightarrow at 2-loop, \exists diagrams that still diverge for $m_G^2 \to 0$ even with external momentum included

Canceling the IR divergences in the mass diagrams arXiv:1609.06977

- Earlier literature: inclusion of momentum cures all the IR divergences
- We found
 - \Rightarrow true at 1-loop order

 \Rightarrow at 2-loop, \exists diagrams that still diverge for $m_G^2 \rightarrow 0$ even with external momentum included

Canceling the IR divergences in the mass diagrams $_{\mbox{\tiny arXiv:1609.06977}}$

- > Earlier literature: inclusion of momentum cures all the IR divergences
- ▷ We found
 - \Rightarrow true at 1-loop order

 \Rightarrow at 2-loop, \exists diagrams that still diverge for $m_G^2 \to 0$ even with external momentum included

・ロト ・ 日 ・ ・ 田 ト ・ 日 ・ ・ 日 ・ ・ 日 ・

Canceling the IR divergences in the mass diagrams arXiv:1609.06977

▲□▶▲圖▶▲≣▶▲≣▶ = ● のへで

Canceling the IR divergences in the mass diagrams $_{\mbox{\tiny arXiv:1609.06977}}$

Setting the Goldstone(s) on-shell in mass diagrams

• Goldstone contributions to the 1-loop scalar self-energy

$$\Pi_{ij}^{(1)}(s = -p^2) = \stackrel{-s}{\overrightarrow{i}} \underbrace{\overbrace{i}}_{i} \underbrace{\overbrace{j}}_{i} + \stackrel{-s}{\overrightarrow{i}} \underbrace{\overbrace{i}}_{G} \underbrace{\overbrace{j}}_{i} + \frac{-s}{\overrightarrow{i}} \underbrace{\overbrace{i}}_{G} \underbrace{\overbrace{j}}_{i} + \frac{-s}{\overrightarrow{i}} + \cdots$$

cure W and X diagrams
cure V and Y diagrams

• Again, shifting the Goldstone mass to on-shell scheme gives

$$(m_G^2)^{\text{run.}} = - \frac{p^2 = 0}{G} - \frac{p^2 = 0}{G} + \cdots$$

 $\rightarrow\,$ 2-loop shift to the mass diagrams

$$\delta \Pi_{ij}^{(1)}(s) = - \stackrel{-s}{\xrightarrow{i}} \stackrel{(0)}{\underbrace{G}} \stackrel{-s}{\xrightarrow{i}} \stackrel{-s}{\xrightarrow{i}} \stackrel{(0)}{\underbrace{G}} \stackrel{-s}{\xrightarrow{i}} \stackrel{(0)}{\xrightarrow{i}} \stackrel{-s}{\xrightarrow{i}} \stackrel{(0)}{\xrightarrow{i}} \stackrel{(0)}{\xrightarrow{i}}$$

Our results

- Results for generic theories (scalars, fermions, gauge bosons), avoiding the Goldstone boson catastrophe
 - \rightarrow full two-loop tadpole equations
 - \rightarrow **two-loop mass diagrams** for neutral scalars in *gaugeless limit*, in a *generalised effective potential approach* (*i.e.* neglect terms of order O(s) and higher)

- ▶ Numerical implementation (soon): SARAH and/or stand-alone code
 - $\rightarrow\,$ no more numerical instability associated with the GBC
 - \rightarrow in particular useful for automated study of non-SUSY theories (for which there was previously no way of evading the GBC)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outlook

- ► Further work on the GBC
 - investigate further the link between resummation and on-shell method
 - extend the solution of GBC to higher loop order
 - \rightarrow on-shell method still working?
 - $\rightarrow\,$ how to formalise/prove the resummation prescription? (i.e. how to find $\Pi_g)$
 - extend mass-diagram calculations to quartic order in the gauge couplings (go beyond the gaugeless limit)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Apply similar techniques to address other IR divergences

Thank you for your attention !

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Backup

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

More details on the resummation of Goldstone contributions

$$R_{\ell} \equiv \sum_{k=1}^{2} \sum_{m=1}^{2} \int \frac{d^{d}k}{i(2\pi)^{d}} \left(\frac{\Pi_{g}}{k^{2} - m_{G}^{2}}\right)^{\ell-1} \\ \propto \frac{(\Pi_{g})^{\ell-1}}{(\ell-1)!} \left(\frac{d}{dm_{G}^{2}}\right)^{\ell-1} \int \frac{d^{d}k}{i(2\pi)^{d}} \log(k^{2} - m_{G}^{2}) \\ = \frac{1}{16\pi^{2}} \frac{(\Pi_{g})^{\ell-1}}{(\ell-1)!} \left(\frac{d}{dm_{G}^{2}}\right)^{\ell-1} f(m_{G}^{2}) \\ \text{so } \sum_{\ell} R_{\ell} = \frac{1}{16\pi^{2}} f(m_{G}^{2} + \Pi_{g})$$

where $f(x) = \frac{x^2}{4}(\overline{\log x} - \frac{3}{2})$

More details about the calculations for the scalar-only tadpole

Divergent terms

• From T_{SS} : $\frac{\partial V_S^{(2)}}{\partial \phi_r^0} \bigg|_{\varphi=v} \supset \frac{1}{4} R_{rp} \sum_{l \neq G} \lambda^{GGll} \lambda^{GGp} \overline{\log} m_G^2 A(m_l^2)$

• From
$$T_{SSSS}$$
:
$$\frac{\partial V_s^{(2)}}{\partial \phi_r^0} \bigg|_{\varphi=v} \supset \frac{1}{4} R_{rp} \lambda^{pGG} \lambda^{Gkl} \lambda^{Gkl} \overline{\log} m_G^2 P_{SS}(m_k^2, m_l^2)$$

Setting the Goldstone mass on-shell

$$\Pi_{GG}^{(1),5}(p^2) = \frac{1}{2}\lambda^{GGjj}A(m_j^2) - \frac{1}{2}(\lambda^{Gjk})^2B(p^2,m_j^2,m_k^2)$$

Hence a 2-loop shift:

$$\frac{\partial V_{S}^{(2)}}{\partial \phi_{r}^{0}}((m_{G}^{2})^{\mathrm{OS}}) = \left. \frac{\partial V_{S}^{(2)}}{\partial \phi_{r}^{0}} \right|_{m_{G}^{2} \to (m_{G}^{2})^{\mathrm{OS}}} - \frac{1}{4} R_{rp} \lambda^{GGp} \overline{\log}(m_{G}^{2})^{\mathrm{OS}} \left(\lambda^{GGjj} A(m_{j}^{2}) - (\lambda^{Gjk})^{2} B(0, m_{j}^{2}, m_{k}^{2}) \right)$$

$$\frac{\partial \hat{V}^{(2)}}{\partial \phi_{r}^{0}}\Big|_{\varphi=v} = R_{rp} \bigg[\overline{T}_{SS}^{p} + \overline{T}_{SSS}^{p} + \overline{T}_{SSSS}^{p} + \overline{T}_{SSFF}^{p} + \overline{T}_{FFFS}^{p} + \overline{T}_{SSV}^{p} + \overline{T}_{VS}^{p} + \overline{T}_{FFV}^{p} + \overline{T}_{FFV}^{p} + \overline{T}_{gauge}^{p} \bigg].$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Notations: see 1609.06977, 1503.03098

The all-scalar diagrams are

$$\begin{split} \overline{T}_{SS}^{p} &= \frac{1}{4} \sum_{j,k,l \neq G} \lambda^{jkll} \lambda^{jkp} P_{SS}(m_{j}^{2}, m_{k}^{2}) A(m_{l}^{2}) \\ &+ \frac{1}{2} \sum_{k,l \neq G} \lambda^{Gkll} \lambda^{Gkp} P_{SS}(0, m_{k}^{2}) A(m_{l}^{2}), \\ \overline{T}_{SSS}^{p} &= \frac{1}{6} \lambda^{pjkl} \lambda^{jkl} f_{SSS}(m_{j}^{2}, m_{k}^{2}, m_{l}^{2}) \big|_{m_{G}^{2} \to 0}, \\ \overline{T}_{SSSS}^{p} &= \frac{1}{4} \sum_{(j,j') \neq (G,G')} \lambda^{pjj'} \lambda^{jkl} \lambda^{j'kl} U_{0}(m_{j}^{2}, m_{j'}^{2}, m_{k}^{2}, m_{l}^{2}) \\ &+ \frac{1}{4} \sum_{(k,l) \neq (G,G')} \lambda^{pGG'} \lambda^{Gkl} \lambda^{G'kl} R_{SS}(m_{k}^{2}, m_{l}^{2}), \end{split}$$

where by $(j, j') \neq (G, G')$ we mean that j, j' are not both Goldstone indices.

The fermion-scalar diagrams are

$$\begin{split} \overline{T}_{SSFF}^{p} &= \sum_{(k,l) \neq (G,G')} \left\{ \frac{1}{2} y^{IJk} y_{IJl} \lambda^{klp} f_{FFS}^{(0,0,1)}(m_{l}^{2}, m_{J}^{2}; m_{k}^{2}, m_{l}^{2}) \right. \\ &\left. - \operatorname{Re} \left[y^{IJk} y^{I'J'k} M_{II'}^{*} M_{JJ'}^{*} \right] \lambda^{klp} U_{0}(m_{k}^{2}, m_{l}^{2}, m_{J}^{2}, m_{J}^{2}) \right\} \\ &\left. + \frac{1}{2} \lambda^{GG'p} y^{IJG} y_{IJG'} \left(-I(m_{l}^{2}, m_{J}^{2}, 0) - (m_{l}^{2} + m_{J}^{2}) R_{SS}(m_{l}^{2}, m_{J}^{2}) \right) \right. \\ &\left. - \lambda^{GG'p} \operatorname{Re} \left[y^{IJG} y^{I'J'G'} M_{II'}^{*} M_{JJ'}^{*} \right] R_{SS}(m_{l}^{2}, m_{J}^{2}), \\ \overline{T}_{FFFS}^{p} = T_{FFFS}^{p} \right|_{m_{G}^{2} \to 0}, \end{split}$$

The gauge boson-scalar tadpoles are

$$\begin{split} \overline{T}_{SSV}^{p} &= T_{SSV}^{p} \left|_{m_{G}^{2} \to 0}, \\ \overline{T}_{VS}^{p} &= \frac{1}{4} g^{abii} g^{abp} f_{VS}^{(1,0)}(m_{a}^{2}, m_{b}^{2}; m_{i}^{2}) \right|_{m_{G}^{2} \to 0} \\ &+ \sum_{(i,k) \neq (G,G')} \frac{1}{4} g^{aaik} \lambda^{ikp} f_{VS}^{(0,1)}(m_{a}^{2}; m_{i}^{2}, m_{k}^{2}), \\ \overline{T}_{VVS}^{p} &= \frac{1}{2} g^{abi} g^{cbi} g^{acp} f_{VVS}^{(1,0,0)}(m_{a}^{2}, m_{c}^{2}; m_{b}^{2}, m_{i}^{2}) \right|_{m_{G}^{2} \to 0} \\ &+ \sum_{(i,j) \neq (G,G')} \frac{1}{4} g^{abi} g^{abj} \lambda^{ijp} f_{VVS}^{(0,0,1)}(m_{a}^{2}, m_{b}^{2}; m_{i}^{2}, m_{j}^{2}) \\ &- \frac{1}{4} g^{abG} g^{abG'} \lambda^{GG'p} R_{VV}(m_{a}^{2}, m_{b}^{2}). \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The gauge boson-fermion and gauge diagrams are not affected by the Goldstone boson catastrophe

$$\begin{split} \overline{T}_{FFV}^{p} =& 2g_{I}^{aJ}\overline{g}_{bJ}^{K} \text{Re}[M_{KI'}y^{I'Ip}]f_{FFV}^{(1,0,0)}(m_{I}^{2},m_{K}^{2};m_{J}^{2},m_{a}^{2}) \\ &+ \frac{1}{2}g_{I}^{aJ}\overline{g}_{bJ}^{I}g^{abp}f_{FFV}^{(0,0,1)}(m_{I}^{2},m_{J}^{2};m_{a}^{2},m_{b}^{2}), \\ \overline{T}_{\overline{FFV}}^{p} =& g_{I}^{aJ}g_{I'}^{aJ'} \text{Re}[y^{II'p}M_{JJ'}^{*}][f_{\overline{FFV}}(m_{I}^{2},m_{J}^{2},m_{a}^{2}) + M_{I}^{2}f_{\overline{FFV}}^{(1,0,0)}(m_{I}^{2},m_{I'}^{2};m_{J}^{2},m_{a}^{2})] \\ &+ g_{I}^{aJ}g_{I'}^{aJ'} \text{Re}[M^{IK'}M^{KI'}M_{JJ'}^{*}y_{KK'p}]f_{\overline{FFV}}^{(1,0,0)}(m_{I}^{2},m_{I'}^{2};m_{J}^{2},m_{a}^{2}) \\ &+ \frac{1}{2}g_{I}^{aJ}g_{I'}^{bJ'}g^{abp}M^{II'}M_{JJ'}^{*}f_{\overline{FFV}}^{(0,0,1)}(m_{I}^{2},m_{J}^{2};m_{a}^{2},m_{b}^{2}), \\ \overline{T}_{gauge}^{p} =& \frac{1}{4}g^{abc}g^{dbc}g^{adp}f_{gauge}^{(1,0,0)}(m_{a}^{2},m_{d}^{2};m_{b}^{2},m_{c}^{2}). \end{split}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ