

Jet calibration in ATLAS Dimitris Varouchas

GDR Terascale, Paris, France, 24th November 2016

Collisions at 13 TeV: very energetic jets!

Run: 302053 Event: 2504627221 2016-06-15 00:12:21 CEST

Event recorded last June

 $Jet_1 p_T = 2.9 TeV, Jet_2 p_T = 2.8 TeV$

• The two central high- p_T jets with invariant mass of 6.5 TeV

Why care about jets?

Why care about jets?

- Energetic jets in LHC pp collisions are produced abundantly
 - Signal, QCD prediction
 - Significant background to other analyses
 - Jets are present in almost all LHC analyses

What are jets?

- Jets are the outputs of clustering algorithms that group inputs
 - Truth particles (stable particles)
 - Particle-flow objects (CMS), or calorimeter energy clusters (ATLAS)

 The challenge of jets comes from QCD physics: parton shower and hadronization

The particles we measure -π, K,
 p, *n*, etc- are **not** the particles
 from the hard scattering

 Jets are proxy to the hard scattered parton (quark or gluon)

Jet algorithms

• Naively, jet algorithms are the inverse of the parton shower

Jet algorithms

• Naively, jet algorithms are the inverse of the parton shower

- But the parton shower is actually not invertible!
- There is no correct jet algorithm. Choice depends on the physics case

IRC Safety

- Parton shower can split particles
- Clustering should not be sensitive to this!

- Parton shower can add extra soft radiation
- Also want to be insensitive to these effects!
- These are the main theoretical considerations on jet clustering
- → Can make comparisons to calculations much easier if these are followed!

IRC Safety

- Parton shower can split particles
- Clustering should not be sensitive to this!

- Parton shower can add extra soft radiation
- Also want to be insensitive to these effects!
- Anti-k_T family of jet algorithms: the standard at LHC experiments
 - Regular shape objects, easy to calibrate and more resilient to pile-up
 - + Typical jet size for resolved objets R=0.4 or 0.5 , where R= $\sqrt{(\Delta\eta^2 + \Delta\phi^2)}$

R choice (jet size)

Jet energy calibration **O**ľ Jet energy scale **O**ľ Jet energy correction

Focusing on ATLAS from now on ...

Why calibrate jets?

- Calorimeter jet energy different than the particle jet energy
 - Sampling calorimeter: cannot measure energy deposited in the absorber
 - Calorimeter non compensating: hadrons energy deposits are only partially measured
 - Energy deposits missed because of dead material
 - Inefficiencies due to noise and pile-up
- Need a calibration to reach the particle jet energy level

- All detector capabilities have to be exploited
 - Combine information from sub-detectors (tracker + calorimeter + muon system)

- Start from calorimeter jets
 - Origin correction: to account for the hard scattering primary vertex. Changes the jet direction

- Start from calorimeter jets
 - Origin correction: to account for the hard scattering primary vertex. Changes the jet direction
 - Jet area and residual pileup corrections to decrease pile-up contamination

- Start from calorimeter jets
 - Origin correction: to account for the hard scattering primary vertex. Changes the jet direction
 - Jet area and residual pileup corrections to decrease pile-up contamination Jet-by

$$p_T^{corr} = p_T - \rho A_T - \alpha (N_{PV} - 1) - \beta \langle \mu \rangle$$

Event-by-event pile-up activity (pile-up density)

ATLAS-PHYS-PUB-2015-015

Pile-up paper submitted to EPJC

- Global sequential calibration (GSC):
 reduce fluctuation effects
 - Use jet-by-jet information to correct the response of each jet individually
 - Improves jet energy resolution

- GSC variables
 - Longitudinal structure of the energy depositions within the calorimeters
 - Track information associated to the jet
 - Information related to the activity in the muon chamber behind an energetic jet (muon segments)

η relative in-situ corrections

- **MC simulation** typically describes the **data** to within about **10%**
- More adequate calibration for forward region is performed: η inter-calibration in data dijet events to correct η dependence of jet response

Absolute in-situ corrections

- In-situ measurement using a jet recoiling against well-calibrated object as a reference
- Combination of 3 in-situ measurements

Jet calibration performance in Run-2

- Many checks with Run-2 data
 - + Jet response in events of high p_T jet balancing against lower p_T jets
 - Jet response in events of photon jet balance
- Remarkable agreement between Data and MC

JES uncertainties

JETM-2016-002

- Final JES uncertainties components O(80), a combination of in-situ and estimated upstream in calibration chain
- Dedicated statistical tools to reduce the number of components maintaining the relevant correlations
- Performance in Run-2 almost comparable to the Run-1 one

Jet energy resolution

Jet energy resolution (JER)

- Measure jet resolution combining Run-1 in-situ **Y+jet**, **Z+jet** and dijet for the first **time**, by performing a p_T global fit
- Constraint fit at **low p**_T via an in-situ noise study

noise term

 p_{T}

 p_T

correlations

Jet perfromance in physics analyses

- Jets are extremely complicated objects
- Their energy calibration relays on every single part of the detector
 - Accurate sub-detector calibration is needed
- They are very sensitive to pile-up
- Several QCD physics effects are present that are hard to model
- Jet related uncertainties are often the dominant detector related uncertainties in physics analyses
 - A few examples in the following slides

Jets and tops

Post-fit Impact on µ

op mass	$t\bar{t} \rightarrow le$	$t\bar{t} \rightarrow lepton+jets$		$t\bar{t} \rightarrow dilepton$	Combination	
	$m_{top}^{\ell+jets}$ [GeV]	JSF	bJSF	m ^{dil} _{top} [GeV]	m _{top} ^{comb} [GeV]	ρ
Results	172.33	1.019	1.003	173.79	172.99	
Statistics	0.75	0.003	0.008	0.54	0.48	0
- Stat. comp. (m_{top})	0.23	n/a	n/a	0.54		
- Stat. comp. (JSF)	0.25	0.003	n/a	n/a		
- Stat. comp. (bJSF)	0.67	0.000	0.008	n/a		
Method	0.11 ± 0.10	0.001	0.001	0.09 ± 0.07	0.07	0
Signal MC	0.22 ± 0.21	0.004	0.002	0.26 ± 0.16	0.24	+1.00
Hadronisation	0.18 ± 0.12	0.007	0.013	0.53 ± 0.09	0.34	+1.00
ISR/FSR	0.32 ± 0.06	0.017	0.007	0.47 ± 0.05	0.04	-1.00
Underlying event	0.15 ± 0.07	0.001	0.003	0.05 ± 0.05	0.06	-1.00
Colour reconnection	0.11 ± 0.07	0.001	0.002	0.14 ± 0.05	0.01	-1.00
PDF	0.25 ± 0.00	0.001	0.002	0.11 ± 0.00	0.17	+0.57
W/Z+jets norm	0.02 ± 0.00	0.000	0.000	0.01 ± 0.00	0.02	+1.00
W/Z+jets shape	0.29 ± 0.00	0.000	0.004	0.00 ± 0.00	0.16	0
NP/fake-lepton norm.	0.10 ± 0.00	0.000	0.001	0.04 ± 0.00	0.07	+1.00
NP/fake-lepton shape	0.05 ± 0.00	0.000	0.001	0.01 ± 0.00	0.03	+0.23
Jet energy scale	0.58 ± 0.11	0.018	0.009	0.75 ± 0.08	0.41	-0.23
<i>b</i> -Jet energy scale	0.06 ± 0.03	0.000	0.010	0.68 ± 0.02	0.34	+1.00
Jet resolution	0.22 ± 0.11	0.007	0.001	0.19 ± 0.04	0.03	-1.00
Jet efficiency	0.12 ± 0.00	0.000	0.002	0.07 ± 0.00	0.10	+1.00
Jet vertex fraction	0.01 ± 0.00	0.000	0.000	0.00 ± 0.00	0.00	-1.00
b-Tagging	0.50 ± 0.00	0.001	0.007	0.07 ± 0.00	0.25	-0.77
$E_{ m T}^{ m miss}$	0.15 ± 0.04	0.000	0.001	0.04 ± 0.03	0.08	-0.15
Leptons	0.04 ± 0.00	0.001	0.001	0.13 ± 0.00	0.05	-0.34
Pile-up	0.02 ± 0.01	0.000	0.000	0.01 ± 0.00	0.01	0
Total	1.27 ± 0.33	0.027	0.024	1.41 ± 0.24	0.91	-0.07

tt fiducial cross section

	σ_{ttb}^{fid}	σ_{ttb}^{fid}	σ_{tbb}^{fid}	σ_{ttbb}^{fid}	R _{ttbb}
Source	Lepton-plus-jets	<i>ii0 eμ</i>	Cut-Daseu	rit-based	Fit-based
Source	uncertainty	uncertainty	uncertainty	uncertainty	uncertainty
	(%)	(%)	(%)	(%)	(%)
Total detector	+17.5 - 14.4	+11.6-8.0	±14.5	+11.9 - 13.1	+10.9 - 12.5
Jet (combined)	+3.9 -2.7	+10.1 -6.1	±5.5	+6.0 -8.5	+8.7 -10.7
Lepton	±0.7	+1.0 -0.5	±2.0	+2.4 -2.1	+0.0 - 1.0
b-tagging effect on b -jets	+4.4 -4.0	+3.6 -3.1	±12.9	+9.4 -9.0	+6.0 -5.8
b-tagging effect on c -jets	+16.2 -13.4	+4.0 -3.6	±1.7	± 1.4	+1.2 -1.3
b-tagging effect on light jets	+3.1 -2.0	+1.9 -2.0	±4.3	+3.3 -2.9	+2.2 -1.9
Total <i>tt</i> modelling	+13.1 -13.7	+23.8 -16.1	±23.8	±21.7	±16.1
Generator	+1.1 -1.4	+23.3 -15.1	±16.9	±17.4	±12.4
Scale choice	±4.3	+1.1 -2.7	±14.2	±9.5	±6.0
Shower/hadronisation	+11.4 -12.1	+3.0 -3.4	±8.2	±8.7	±7.1
PDF	+4.7 -4.5	±3.3	±3.3	±0.8	±4.1
Removing/doubling $t\bar{t}V$ and $t\bar{t}H$	±0.4	+1.1 -0.9	±1.5	+3.1 -2.7	+3.0 - 2.6
Other backgrounds	±0.8	+0.9 -0.8	±1.6	+3.5 -3.3	±2.5
MC sample size	< 1	< 1	±9.6	±7.4	±7.4
Luminosity	±2.8	±2.8	±3.2	±2.9	±0.1
Total systematic uncertainty	+25.5 -19.2	+30.5 -19.9	±29.5	+26.4 -26.9	+21.1 -21.9
Statistical uncertainty	±7.1	+19.2 -17.9	±18.4	±24.6	±25.2
Total uncertainty	+26.5 -20.5	+36.0 -26.8	±35.2	+36.1 -36.4	+32.9 -33.4

Jets and tops

- Jet related uncertainties are one of the dominant detector uncertainties in the majority of top measurements

- Profound understanding of the jet energy calibration/correction and the related uncertainties will result in more precise top measurements

tt fiducial cros	s section
	σ_{tth}^{fid}

	σ_{ttb}^{fid} Lepton-plus-jets	$\sigma_{ttb}^{\mathrm{fid}}$ ttb e μ	$\sigma_{ttbb}^{\mathrm{fid}}$ Cut-based	$\sigma_{ttbb}^{\mathrm{fid}}$ Fit-based	<i>R</i> _{ttbb} Fit-based
Source	uncertainty	uncertainty	uncertainty	uncertainty	uncertainty
	(%)	(%)	(%)	(%)	(%)
Total detector	+17.5-14.4	+11.6 -8.0	±14.5	+11.9 - 13.1	+10.9 - 12.5
Jet (combined)	+3.9 -2.7	+10.1 -6.1	±5.5	+6.0 -8.5	+8.7 -10.7
Lepton	±0.7	+1.0 -0.5	± 2.0	+2.4 -2.7	+0.8 -1.0
<i>b</i> -tagging effect on <i>b</i> -jets	+4.4 -4.0	+3.6 -3.1	±12.9	+9.4 -9.0	+6.0 -5.8
b-tagging effect on c -jets	+16.2 -13.4	+4.0 -3.6	±1.7	± 1.4	+1.2 -1.3
b-tagging effect on light jets	+3.1 -2.0	+1.9 -2.0	±4.3	+3.3 -2.9	+2.2 -1.9
Total <i>tī</i> modelling	+13.1 -13.7	+23.8 -16.1	±23.8	±21.7	±16.1
Generator	+1.1 -1.4	+23.3 -15.1	±16.9	±17.4	±12.4
Scale choice	±4.3	+1.1 -2.7	±14.2	±9.5	±6.0
Shower/hadronisation	+11.4 -12.1	+3.0 -3.4	±8.2	±8.7	±7.1
PDF	+4.7 -4.5	±3.3	±3.3	±0.8	±4.1
Removing/doubling $t\bar{t}V$ and $t\bar{t}H$	±0.4	+1.1 -0.9	±1.5	+3.1 -2.7	+3.0 - 2.6
Other backgrounds	±0.8	+0.9 -0.8	±1.6	+3.5 -3.3	±2.5
MC sample size	< 1	< 1	±9.6	±7.4	±7.4
Luminosity	±2.8	±2.8	±3.2	±2.9	±0.1
Total systematic uncertainty	+25.5 -19.2	+30.5 -19.9	±29.5	+26.4 -26.9	+21.1 -21.9
Statistical uncertainty	±7.1	+19.2 -17.9	±18.4	±24.6	±25.2
Total uncertainty	+26.5 -20.5	+36.0 -26.8	±35.2	+36.1 -36.4	+32.9 -33.4

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $)(
$m_{top}^{\ell+jets}$ [GeV]JSFbJSF m_{top}^{ti} [GeV] m_{top}^{comb} [GeV] ρ Results172.331.0191.003173.79172.99Statistics0.750.0030.0080.540.480- Stat. comp. (m_{top})0.23 n/a n/a n/a n/a n/a - Stat. comp. (JSF)0.250.003 n/a n/a n/a n/a - Stat. comp. (JSF)0.670.0000.008 n/a n/a Method0.11 ± 0.100.0010.0010.09 ± 0.070.070Signal MC0.22 ± 0.210.0040.0020.26 ± 0.160.24+1.00Hadronisation0.18 ± 0.120.0070.130.53 ± 0.090.34+1.00Underlying event0.15 ± 0.070.0010.0020.14 ± 0.050.04-1.00Underlying event0.15 ± 0.070.0010.0020.11 ± 0.000.01-1.00PDF0.25 ± 0.000.0000.0020.11 ± 0.000.02+1.00W/Z+jets norm0.02 ± 0.000.0000.0040.00 ± 0.000.02+1.00W/Z+jets shape0.29 ± 0.000.0000.0010.04 ± 0.000.01+0.23Jet energy scale0.58 ± 0.110.0180.090.75 ± 0.080.41-0.23Jet energy scale0.05 ± 0.000.0000.0010.01 ± 0.000.03+0.23Jet energy scale0.05 ± 0.000.0000.0010.07 ± 0.00 <td colspan="2"></td> <td colspan="2">$t\bar{t} \rightarrow lepton+jets$</td> <td>$t\bar{t} \rightarrow dilepton$</td> <td colspan="2">Combination</td>			$t\bar{t} \rightarrow lepton+jets$		$t\bar{t} \rightarrow dilepton$	Combination				
Results 172.33 1.019 1.003 173.79 172.99 Statistics 0.75 0.003 0.008 0.54 0.48 0 - Stat. comp. (m_{top}) 0.23 n/a n/a n/a 0.54 0.48 0 - Stat. comp. (JSF) 0.25 0.003 n/a n/a n/a n/a - Stat. comp. (JSF) 0.67 0.000 0.008 n/a n/a Method 0.11 ± 0.10 0.001 0.002 0.26 ± 0.16 0.24 ± 1.00 Hadronisation 0.18 ± 0.12 0.007 0.013 0.53 ± 0.09 0.34 ± 1.00 Underlying event 0.15 ± 0.07 0.001 0.002 0.14 ± 0.05 0.01 -1.00 PDF 0.25 ± 0.00 0.001 0.002 0.14 ± 0.05 0.01 -1.00 W/Z+jets norm 0.02 ± 0.00 0.000 0.004 0.00 0.02 $+1.00$ W/Z+jets shape 0.29 ± 0.00 0.000 0.001 0.01 ± 0			$m_{top}^{\ell+jets}$ [GeV]	JSF	bJSF	$m_{\rm top}^{\rm dil}$ [GeV]	m_{top}^{comb} [GeV]	ρ		
Statistics 0.75 0.003 0.008 0.54 0.48 0 - Stat. comp. (ISF) 0.23 n/a n/a n/a n/a 0.54 0.48 0 - Stat. comp. (ISF) 0.25 0.003 n/a n/a n/a n/a n/a - Stat. comp. ($bJSF$) 0.67 0.000 0.008 n/a n/a Method 0.11 ± 0.10 0.001 0.002 0.26 ± 0.16 0.24 ± 1.00 Hadronisation 0.18 ± 0.12 0.007 0.013 0.53 ± 0.09 0.34 ± 1.00 Underlying event 0.32 ± 0.06 0.017 0.003 0.05 ± 0.05 0.06 -1.00 Colour reconnection 0.11 ± 0.07 0.001 0.002 0.14 ± 0.05 0.01 -1.00 PDF 0.25 \pm 0.00 0.000 0.000 0.01 ± 0.00 0.02 ± 1.00 W/Z+jets norm 0.02 \pm 0.00 0.000 0.001 ± 0.00 0.01 ± 0.00 0.02 ± 1.00		Results	172.33	1.019	1.003	173.79	172.99			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Statistics	0.75	0.003	0.008	0.54	0.48	0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		- Stat. comp. (m_{top})	0.23	n/a	n/a	0.54				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		– Stat. comp. (JSF)	0.25	0.003	n/a	n/a				
Method 0.11 ± 0.10 0.001 0.09 ± 0.07 0.07 0 Signal MC 0.22 ± 0.21 0.004 0.002 0.26 ± 0.16 0.24 $+1.00$ Hadronisation 0.18 ± 0.12 0.007 0.013 0.53 ± 0.09 0.34 $+1.00$ ISR/FSR 0.32 ± 0.06 0.017 0.007 0.47 ± 0.05 0.04 -1.00 Underlying event 0.15 ± 0.07 0.001 0.003 0.05 ± 0.05 0.06 -1.00 Colour reconnection 0.11 ± 0.07 0.001 0.002 0.14 ± 0.05 0.01 -1.00 PDF 0.25 ± 0.00 0.000 0.002 0.11 ± 0.00 0.17 $+0.57$ W/Z+jets norm 0.02 ± 0.00 0.000 0.001 ± 0.00 0.001 ± 0.00 0.02 ± 1.00 W/Z+jets shape 0.29 ± 0.00 0.000 0.01 ± 0.00 0.07 ± 1.00 M/Z+jets shape 0.29 ± 0.00 0.000 0.01 ± 0.00 0.03 ± 1.00 M/Z+jets shape 0.29 ± 0.00		– Stat. comp. (bJSF)	0.67	0.000	0.008	n/a				
Signal MC 0.22 ± 0.21 0.004 0.002 0.26 ± 0.16 0.24 $+1.00$ Hadronisation 0.18 ± 0.12 0.007 0.013 0.53 ± 0.09 0.34 $+1.00$ ISR/FSR 0.32 ± 0.06 0.017 0.007 0.47 ± 0.05 0.04 -1.00 Underlying event 0.15 ± 0.07 0.001 0.003 0.05 ± 0.05 0.06 -1.00 Colour reconnection 0.11 ± 0.07 0.001 0.002 0.14 ± 0.05 0.01 -1.00 PDF 0.25 ± 0.00 0.001 0.002 0.11 ± 0.00 0.17 $+0.57$ W/Z+jets norm 0.02 ± 0.00 0.000 0.004 0.00 ± 0.00 0.02 $+1.00$ W/Z+jets shape 0.29 ± 0.00 0.000 0.004 0.00 ± 0.00 0.02 $+1.00$ NP/fake-lepton norm. 0.10 ± 0.00 0.000 0.001 ± 0.00 0.07 ± 1.00 NP/fake-lepton shape 0.05 ± 0.00 0.000 0.001 ± 0.00 0.03 ± 0.23 Jet energy scale 0.66 ± 0.03 0.000 0.012 ± 0.00 0.012 ± 0.00 0.012 ± 0.00 Jet resolution 0.22 ± 0.11 0.007 0.07 ± 0.00 0.10 ± 1.00 Jet resolution 0.22 ± 0.11 0.007 0.07 ± 0.00 0.025 ± 0.77 Jet energy scale 0.05 ± 0.00 0.001 0.07 ± 0.00 0.00 ± -1.00 Jet energy scale 0.05 ± 0.00 0.001 0.07 ± 0.00 0.025 ± -0.77 Jet energy scale 0.02 ± 0.01 0.001 0.07 ± 0.00 $0.$		Method	0.11 ± 0.10	0.001	0.001	0.09 ± 0.07	0.07	0		
Hadronisation 0.18 ± 0.12 0.007 0.013 0.53 ± 0.09 0.34 $+1.00$ ISR/FSR 0.32 ± 0.06 0.017 0.007 0.47 ± 0.05 0.04 -1.00 Underlying event 0.15 ± 0.07 0.001 0.003 0.05 ± 0.05 0.06 -1.00 Colour reconnection 0.11 ± 0.07 0.001 0.002 0.14 ± 0.05 0.01 -1.00 PDF 0.25 ± 0.00 0.001 0.002 0.11 ± 0.00 0.17 $+0.57$ W/Z+jets norm 0.02 ± 0.00 0.000 0.004 0.00 ± 0.00 0.02 $+1.00$ W/Z+jets shape 0.29 ± 0.00 0.000 0.004 0.00 ± 0.00 0.02 $+1.00$ NP/fake-lepton norm. 0.10 ± 0.00 0.000 0.001 0.04 ± 0.00 0.07 $+1.00$ NP/fake-lepton shape 0.05 ± 0.00 0.000 0.011 ± 0.00 0.03 ± 0.23 Jet energy scale 0.58 ± 0.11 0.018 0.009 0.75 ± 0.08 0.41 Jet resolution 0.22 ± 0.11 0.007 0.01 0.19 ± 0.04 0.03 Jet energy scale 0.05 ± 0.00 0.000 0.001 0.01 ± 0.00 0.00 Jet resolution 0.22 ± 0.11 0.007 0.07 ± 0.00 0.10 ± 1.00 Jet energy fraction 0.01 ± 0.00 0.000 0.001 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 Jet energy scale 0.50 ± 0.00 0.000 0.007 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 Jet energy scale 0.50 ± 0.0		Signal MC	0.22 ± 0.21	0.004	0.002	0.26 ± 0.16	0.24	+1.00		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Hadronisation	0.18 ± 0.12	0.007	0.013	0.53 ± 0.09	0.34	+1.00		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ISR/FSR	0.32 ± 0.06	0.017	0.007	0.47 ± 0.05	0.04	-1.00		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Underlying event	0.15 ± 0.07	0.001	0.003	0.05 ± 0.05	0.06	-1.00		
PDF 0.25 ± 0.00 0.001 0.002 0.11 ± 0.00 0.17 $+0.57$ W/Z+jets norm 0.02 ± 0.00 0.000 0.000 0.01 ± 0.00 0.02 $+1.00$ W/Z+jets shape 0.29 ± 0.00 0.000 0.004 0.00 ± 0.00 0.01 0.02 $+1.00$ NP/fake-lepton norm. 0.10 ± 0.00 0.000 0.001 0.04 ± 0.00 0.07 $+1.00$ NP/fake-lepton shape 0.05 ± 0.00 0.000 0.001 0.04 ± 0.00 0.03 $+0.23$ Jet energy scale 0.58 ± 0.11 0.018 0.009 0.75 ± 0.08 0.41 -0.23 b-Jet energy scale 0.06 ± 0.03 0.000 0.010 0.68 ± 0.02 0.34 $+1.00$ Jet resolution 0.22 ± 0.11 0.007 0.001 0.19 ± 0.04 0.03 -1.00 Jet efficiency 0.12 ± 0.00 0.000 0.002 0.07 ± 0.00 0.000 -1.00 b-Tagging 0.50 ± 0.00 0.001 0.007 0.07 ± 0.00 0.025 -0.77 E_{T}^{miss} 0.15 ± 0.04 0.000 0.001 0.04 ± 0.03 0.08 -0.15 Leptons 0.04 ± 0.00 0.001 0.001 0.13 ± 0.00 0.05 -0.34 Pile-up 0.02 ± 0.01 0.000 0.000 0.01 ± 0.00 0.01 0.01 $Total$ 1.27 ± 0.33 0.027 0.024 1.41 ± 0.24 0.91 -0.07		Colour reconnection	0.11 ± 0.07	0.001	0.002	0.14 ± 0.05	0.01	-1.00		
W/Z +jets norm 0.02 ± 0.00 0.000 0.000 0.01 ± 0.00 0.02 ± 1.00 W/Z +jets shape 0.29 ± 0.00 0.000 0.004 0.00 ± 0.00 0.16 0 NP/fake-lepton norm. 0.10 ± 0.00 0.000 0.001 0.04 ± 0.00 0.07 ± 1.00 NP/fake-lepton shape 0.05 ± 0.00 0.000 0.001 0.01 ± 0.00 0.07 ± 1.00 NP/fake-lepton shape 0.05 ± 0.00 0.000 0.001 0.01 ± 0.00 0.03 ± 0.23 Jet energy scale 0.58 ± 0.11 0.018 0.009 0.75 ± 0.08 0.41 -0.23 b-Jet energy scale 0.06 ± 0.03 0.000 0.010 0.68 ± 0.02 0.34 ± 1.00 Jet resolution 0.22 ± 0.11 0.007 0.001 0.19 ± 0.04 0.03 -1.00 Jet efficiency 0.12 ± 0.00 0.000 0.002 0.07 ± 0.00 0.10 ± 1.00 Jet vertex fraction 0.01 ± 0.00 0.000 0.002 0.07 ± 0.00 0.00 -1.00 b-Tagging 0.50 ± 0.00 0.001 0.007 0.07 ± 0.00 0.25 -0.77 $E_{\text{miss}}^{\text{miss}}$ 0.15 ± 0.04 0.001 0.001 0.04 ± 0.03 0.08 -0.15 Leptons 0.04 ± 0.00 0.001 0.001 0.13 ± 0.00 0.05 -0.34 Pile-up 0.02 ± 0.01 0.000 0.004 0.01 ± 0.00 0.01 0.01 Total 1.27 ± 0.33 0.027 0.024 1		PDF	0.25 ± 0.00	0.001	0.002	0.11 ± 0.00	0.17	+0.57		
W/Z +jets shape 0.29 ± 0.00 0.000 0.004 0.00 ± 0.00 0.16 0 NP/fake-lepton norm. 0.10 ± 0.00 0.000 0.001 0.04 ± 0.00 0.07 $+1.00$ NP/fake-lepton shape 0.05 ± 0.00 0.000 0.001 0.01 ± 0.00 0.03 $+0.23$ Jet energy scale 0.58 ± 0.11 0.018 0.009 0.75 ± 0.08 0.41 -0.23 b-Jet energy scale 0.06 ± 0.03 0.000 0.010 0.68 ± 0.02 0.34 $+1.00$ Jet resolution 0.22 ± 0.11 0.007 0.001 0.19 ± 0.04 0.03 -1.00 Jet efficiency 0.12 ± 0.00 0.000 0.002 0.07 ± 0.00 0.10 $+1.00$ Jet vertex fraction 0.01 ± 0.00 0.000 0.002 0.07 ± 0.00 0.00 -1.00 b-Tagging 0.50 ± 0.00 0.001 0.007 0.07 ± 0.00 0.25 -0.77 $E_{\rm T}^{\rm miss}$ 0.15 ± 0.04 0.001 0.001 0.04 ± 0.03 0.08 -0.15 Leptons 0.04 ± 0.00 0.001 0.001 0.13 ± 0.00 0.05 -0.34 Pile-up 0.02 ± 0.01 0.000 0.001 ± 0.00 0.01 ± 0.00 0.01 0.01		W/Z+jets norm	0.02 ± 0.00	0.000	0.000	0.01 ± 0.00	0.02	+1.00		
NP/fake-lepton norm. NP/fake-lepton shape 0.10 ± 0.00 0.000 0.001 0.04 ± 0.00 0.07 $+1.00$ NP/fake-lepton shape 0.05 ± 0.00 0.000 0.001 0.01 ± 0.00 0.03 ± 0.23 Jet energy scale 0.58 ± 0.11 0.018 0.009 0.75 ± 0.08 0.41 -0.23 b-Jet energy scale 0.06 ± 0.03 0.000 0.010 0.68 ± 0.02 0.34 $+1.00$ Jet resolution 0.22 ± 0.11 0.007 0.001 0.19 ± 0.04 0.03 -1.00 Jet efficiency 0.12 ± 0.00 0.000 0.002 0.07 ± 0.00 0.10 $+1.00$ Jet vertex fraction 0.01 ± 0.00 0.000 0.002 0.07 ± 0.00 0.10 $+1.00$ Jet vertex fraction 0.01 ± 0.00 0.000 0.002 0.07 ± 0.00 0.10 $+1.00$ Jet vertex fraction 0.01 ± 0.00 0.000 0.002 ± 0.00 0.00 ± 0.00 $0.000 - 1.00$ b-Tagging 0.50 ± 0.00 0.001 0.07 ± 0.00 0.25 -0.77 E_{T}^{miss} 0.15 ± 0.04 0.000 0.001 0.04 ± 0.03 0.08 -0.15 Leptons 0.04 ± 0.00 0.001 0.001 ± 0.00 0.01 ± 0.00 0.01 0.01 Total 1.27 ± 0.33 0.027 0.024 1.41 ± 0.24 0.91		W/Z+jets shape	0.29 ± 0.00	0.000	0.004	0.00 ± 0.00	0.16	0		
NP/fake-lepton shape 0.05 ± 0.00 0.000 0.001 0.01 ± 0.00 0.03 ± 0.23 Jet energy scale 0.58 ± 0.11 0.018 0.009 0.75 ± 0.08 0.41 -0.23 b-Jet energy scale 0.06 ± 0.03 0.000 0.010 0.68 ± 0.02 0.34 ± 1.00 Jet resolution 0.22 ± 0.11 0.007 0.001 0.19 ± 0.04 0.03 -1.00 Jet efficiency 0.12 ± 0.00 0.000 0.002 0.07 ± 0.00 0.10 ± 1.00 Jet vertex fraction 0.01 ± 0.00 0.000 0.002 0.07 ± 0.00 0.00 -1.00 b-Tagging 0.50 ± 0.00 0.001 0.007 0.07 ± 0.00 0.25 -0.77 $E_{\rm miss}^{\rm miss}$ 0.15 ± 0.04 0.000 0.001 0.04 ± 0.03 0.08 -0.15 Leptons 0.04 ± 0.00 0.001 0.001 0.13 ± 0.00 0.05 -0.34 Pile-up 0.02 ± 0.01 0.000 0.004 1.41 ± 0.24 0.91 -0.07		NP/fake-lepton norm.	0.10 ± 0.00	0.000	0.001	0.04 ± 0.00	0.07	+1.00		
Jet energy scale 0.58 ± 0.11 0.018 0.009 0.75 ± 0.08 0.41 -0.23 b-Jet energy scale 0.06 ± 0.03 0.000 0.010 0.68 ± 0.02 0.34 $+1.00$ Jet resolution 0.22 ± 0.11 0.007 0.001 0.19 ± 0.04 0.03 -1.00 Jet efficiency 0.12 ± 0.00 0.000 0.002 0.07 ± 0.00 0.10 $+1.00$ Jet vertex fraction 0.01 ± 0.00 0.000 0.002 0.07 ± 0.00 0.10 $+1.00$ b-Tagging 0.50 ± 0.00 0.001 0.007 0.07 ± 0.00 0.00 -1.00 b-Tagping 0.15 ± 0.04 0.000 0.001 0.04 ± 0.03 0.08 -0.15 Leptons 0.04 ± 0.00 0.001 0.001 0.13 ± 0.00 0.05 -0.34 Pile-up 0.02 ± 0.01 0.000 0.004 1.41 ± 0.24 0.91 -0.07	_	NP/fake-lepton shape	0.05 ± 0.00	0.000	0.001	0.01 ± 0.00	0.03	+0.23		
b-Jet energy scale 0.06 ± 0.03 0.000 0.010 0.68 ± 0.02 0.34 $+1.00$ Jet resolution 0.22 ± 0.11 0.007 0.001 0.19 ± 0.04 0.03 -1.00 Jet efficiency 0.12 ± 0.00 0.000 0.002 0.07 ± 0.00 0.10 $+1.00$ Jet vertex fraction 0.01 ± 0.00 0.000 0.000 0.00 ± 0.00 0.00 -1.00 b-Tagging 0.50 ± 0.00 0.001 0.007 0.07 ± 0.00 0.00 -1.00 b-Tagging 0.50 ± 0.00 0.001 0.007 0.07 ± 0.00 0.25 -0.77 E_{T}^{miss} 0.15 ± 0.04 0.000 0.001 0.04 ± 0.03 0.08 -0.15 Leptons 0.04 ± 0.00 0.001 0.001 0.13 ± 0.00 0.05 -0.34 Pile-up 0.02 ± 0.01 0.000 0.001 ± 0.00 0.01 ± 0.00 0.01 Total 1.27 ± 0.33 0.027 0.024 1.41 ± 0.24 0.91	ļ	Jet energy scale	0.58 ± 0.11	0.018	0.009	0.75 ± 0.08	0.41	-0.23		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Į	b-Jet energy scale	0.06 ± 0.03	0.000	0.010	0.68 ± 0.02	0.34	+1.00		
Jet efficiency 0.12 ± 0.00 0.000 0.002 0.07 ± 0.00 0.10 $+1.00$ Jet vertex fraction 0.01 ± 0.00 0.000 0.000 0.00 ± 0.00 0.00 ± -1.00 b-Tagging 0.50 ± 0.00 0.001 0.007 0.07 ± 0.00 0.25 -0.77 E_{T}^{miss} 0.15 ± 0.04 0.000 0.001 0.04 ± 0.03 0.08 -0.15 Leptons 0.04 ± 0.00 0.001 0.001 0.13 ± 0.00 0.05 -0.34 Pile-up 0.02 ± 0.01 0.000 0.004 1.41 ± 0.24 0.91 -0.07		Jet resolution	0.22 ± 0.11	0.007	0.001	0.19 ± 0.04	0.03	-1.00		
Jet vertex fraction 0.01 ± 0.00 0.000 0.000 0.00 ± 0.00 $0.00 -1.00$ b-Tagging 0.50 ± 0.00 0.001 0.007 0.07 ± 0.00 0.25 -0.77 $E_{\rm T}^{\rm miss}$ 0.15 ± 0.04 0.000 0.001 0.04 ± 0.03 0.08 -0.15 Leptons 0.04 ± 0.00 0.001 0.001 0.13 ± 0.00 0.05 -0.34 Pile-up 0.02 ± 0.01 0.000 0.000 0.01 ± 0.00 0.01 0 Total 1.27 ± 0.33 0.027 0.024 1.41 ± 0.24 0.91 -0.07	ļ	Jet efficiency	0.12 ± 0.00	0.000	0.002	0.07 ± 0.00	0.10	+1.00		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ł	Jet vertex fraction	0.01 ± 0.00	0.000	0.000	0.00 ± 0.00	0.00	-1.00		
$E_{\rm T}^{\rm miss}$ 0.15 ± 0.04 0.000 0.001 0.04 ± 0.03 0.08 -0.15 Leptons 0.04 ± 0.00 0.001 0.001 0.13 ± 0.00 0.05 -0.34 Pile-up 0.02 ± 0.01 0.000 0.000 0.01 ± 0.00 0.01 0 Total 1.27 ± 0.33 0.027 0.024 1.41 ± 0.24 0.91 -0.07		b-Tagging	0.50 ± 0.00	0.001	0.007	0.07 ± 0.00	0.25	-0.77		
Leptons 0.04 ± 0.00 0.001 0.001 0.13 ± 0.00 0.05 -0.34 Pile-up 0.02 ± 0.01 0.000 0.000 0.01 ± 0.00 0.01 0 Total 1.27 ± 0.33 0.027 0.024 1.41 ± 0.24 0.91 -0.07		$E_{\mathrm{T}}^{\mathrm{miss}}$	0.15 ± 0.04	0.000	0.001	0.04 ± 0.03	0.08	-0.15		
Pile-up 0.02 ± 0.01 0.000 0.01 ± 0.00 0.01 0 Total 1.27 ± 0.33 0.027 0.024 1.41 ± 0.24 0.91 -0.07		Leptons	0.04 ± 0.00	0.001	0.001	0.13 ± 0.00	0.05	-0.34		
Total 1.27 ± 0.33 0.027 0.024 1.41 ± 0.24 0.91 -0.07		Pile-up	0.02 ± 0.01	0.000	0.000	0.01 ± 0.00	0.01	0		
		Total	1.27 ± 0.33	0.027	0.024	1.41 ± 0.24	0.91	-0.07		

Dijet resonance searches

ATLAS-CONF-2016-069

- Search for non-SM features in di-jet final
 - New resonances in m_{jj} spectrum
 - Select events with leading (subleading) jet $p_T > 440(60)$ GeV
 - Search for a bump in invariant mass m_{jj}
- ~16 fb⁻¹ analysed, preliminary result shown in ICHEP

SUSY searches with jets and ET^{miss}

 ~13 fb⁻¹ analysed, preliminary result shown in ICHEP

ATLAS-CONF-2016-078

- Search for squarks and gluinos in final states with jets and E_T^{miss}
- Effective mass (scalar sum of jets p_T and E_T^{miss}) the discriminating variable

Ð	IN F		• Data 2015 and 2016 \exists			
Ğ	E	ATLAS Preliminary		Channel	Meff-4j-1000	
20(103	√s=13 TeV, 13.3 fb⁻¹ -	W+jets -	Total bkg	84	
<u>\</u>		Meff-4j-1000	Z+jets	Total bkg unc.	$\pm 7 \; [8\%]$	
ent	F		Diboson – Multijet	MC statistics	$\pm 2.6 [3\%]$	
> 山	10 ²	_	gg direct,	$\Delta \mu_{Z+\text{jets}}$	$\pm 3.1 [4\%]$	Jet/MET the
			$m(\tilde{g}, \chi_1^0) = (1800, 0)$	$\Delta \mu_{W+\text{jets}}$	$\pm 1.9 \ [2\%]$	
	10		_	$\Delta \mu_{\mathrm{Top}}$	$\pm 2.6 \ [3\%]$	only relevant
	10		1	$\Delta \mu_{ m Multi-jet}$	$\pm 0.03 [0\%]$	detector -
	E			$CR\gamma$ corr. factor	$\pm 1.9 \ [2\%]$	
	1			Theory Z	$\pm 4 [5\%]$	related
				Theory W	$\pm 1.3 \ [2\%]$	uncertainty
<u>U</u>	2 ² E			Theory Top	$\pm 1.3 \ [2\%]$	/
\geq	1.5			Theory Diboson	$\pm 2.1 [3\%]$	
ata	0.5			$\rm Jet/MET$	$\pm 2.0 \ [2\%]$	
	οE	1000 1500 2000	2500 3000 3500	Multi-jet method	$\pm 0.32 \ [0\%]$	•
			m _{-"} (incl.) [GeV]			2

Conclusions

- Jets in LHC: challenging but extremely interesting objects
 - Huge amount of work optimising their energy calibration and performance and minimise the related uncertainties
 - Key ingredient for many analyses
- Jet Run-2 performance in ATLAS, already comparable to the one of Run-1
 - We should (and will) do better in the years to come
- ATLAS Run-2 jets are ready for an ambitious physics programme
 - Stay tuned for the full 2015+2016 datasets results

29

Back-up

Jet inputs in ATLAS: calorimeter clusters

 \Rightarrow Exploit high resolution of calorimeters and fine longitudinal segmentation

- 3-dimensional topological clustering of calorimeter read-out channels (cells)
 - Optimise to follow the shower development in the calorimeter
 - **Noise suppression**
 - Ideal for jet substructure (constituent level calibration)

.5

Jet inputs: calorimeter clusters

- Two energy scale calibrations for topological clusters
 - Electromagnetic (EM)
 - Local cluster weighting (LCW): Distinguish EM/HAD depositions

Jet algorithms

- Anti-k_T family of jet algorithms: the **standard** at **LHC** experiments
 - Regular shape objects (easy to calibrate, more resilient to pile-up)
 - Typical jet size for **resolved objets** R=0.4 or 0.5 , where R= $\sqrt{(\Delta \eta^2 + \Delta \phi^2)}$

- Start from calorimeter jets
 - Origin correction: to account for the hard scattering primary vertex. Changes the jet direction
 - Jet area and residual pileup corrections to decrease pile-up contamination Jet-by

Jet-by-jet pile-up sensuvuy

$$p_T^{corr} = p_T - \rho A_T - \alpha (N_{PV} - 1) - \beta \langle \mu \rangle$$

Event-by-event pile-up activity (pile-up density)

ATLAS-PHYS-PUB-2015-015 Pile-up paper submitted to EPJC

34

- Global sequential calibration (GSC): to reduce fluctuation effects
 - Use jet-by-jet information to correct the response of each jet individually
- MC JES (one step before) corrects jets to particle level reference on **average**
- GSC variables
 - Longitudinal structure of the **energy depositions** within the calorimeters
 - Track information associated to the jet
 - Information related to the activity in the muon chamber behind a jet (**muon segments**)

$ \eta $ region	Correction 1	Correction 2	Correction 3	Correction 4	Correction 5
$[0, 1.7] \\ [1.7, 2.5] \\ [2.5, 2.7] \\ [2.7, 3.5]$	f _{Tile0}	f_{LAr3} f_{LAr3} f_{LAr3} f_{LAr3}	n _{trk} n _{trk}	width _{trk} width _{trk}	$N_{ m segments}$ $N_{ m segments}$ $N_{ m segments}$

Global Sequential Calibration

• Derived using MC, parametrised in p_T and η

ATLAS-CONF-2015-002 ATL-PHYS-PUB-2015-015

JER uncertainties in Run 2

ATL-PHYS-PUB-2015-015

- Current 2015 JER measurement, based on a 2012 JER measurement extrapolation (pre-recommendations)
- In-situ 2015 measurement ongoing, target to have it done in 1-2 months timescale. It will be the base of the 2016 JER recommendations
- JER uncertainties correlations are now taken into account coherently
 - ◆ We provide an implementation with 9NPs, smearing the MC and Data. See <u>here</u> for details
 - This will be supported in 2016 recommendations

JES ATLAS and CMS

- Understand the source of the uncertainty
- Correlations are driven by the methods to derive them
- Detector related —-> non correlated
- Theory related (use simulation) —-> correlated
- Others in between

• Gluon flavour uncertainty

- ATLAS and CMS derive an uncertainty from the difference between Pythia and Herwig++,
- same generator difference is used, and then evaluated in a given topology (for a given gluon fraction), they are expected to be strongly correlated.
- This, combined with the nearly identical resulting uncertainty between experiments **fully correlated**.

JES ATLAS and CMS

The associated correlation ranges for these correlations groups are listed below.

- 1. Uncorrelated uncertainties: correlations between ATLAS and CMS are fixed at 0%.
 - · Statistical and detector-related uncertainty components
 - Fragmentation-related terms not in other correlation groups
 - Pileup uncertainty components
 - High- $p_{\rm T}$ uncertainty components
 - Single-experiment uncertainty components
- Partially correlated uncertainties: correlations between ATLAS and CMS are varied between 0% and 50%.
 - In situ absolute balance modeling uncertainty components (Z-jet, γ -jet, and multi-jet balance)
- Mostly correlated uncertainties: correlations between ATLAS and CMS are varied between 50% and 100%.
 - In situ relative balance modeling components (η -intercalibration)
 - *b*-jet fragmentation energy scale uncertainty
- 4. Fully correlated uncertainties: correlations between ATLAS and CMS are fixed at 100%.
 - g-jet fragmentation energy scale uncertainty

The price of high Luminosity: Pile-up

Tracks and vertexing against pile-up

 Robust and efficient tracking performance is of paramount importance to mitigate the pile-up fluctuations affecting hard scattered jets

Pile-up at HL-LHC

Coping with 140-200 expected pile-up interactions, a tremendous challenge in HL-LHC

- Choose relevant detector capabilities
- Develop sophisticated pile-up mitigation techniques
- Important component of ongoing R&D - ITk η coverage will play a crucial role

Jet performance at HL-LHC

- The size of pile-up fluctuations become of the same order as the hard scatter jets at low p_T
- Jet p_T measurement is only meaningful when it is significantly above the pile-up noise
 - Key for jet calibration at high luminosity: reduce pile-up fluctuations!
- Lower jet p_T thresholds are important for several physics processes, e.g. jet veto in
 VBF Higgs processes, single top, t-tbar, etc

