# AUTOMATIC LOOP CALCULATIONS OF NMSSM PROCESSES WITH SLOOPS

Guillaume CHALONS

GDR TERASCALE, LPNHE, November '16





AUTOMATIC LOOP CALCULATIONS OF NMSSM PROCESSES WITH SLOOPS

### **OVERVIEW OF THE MODEL AND MOTIVATIONS**

NMSSM = Next-to Minimal Supersymmetric Standard Model :

$$W_{NMSSM}^{\mathbb{Z}_3} = W_{MSSM}^{\mu=0} + \lambda \hat{S} \hat{H}_u \hat{H}_d + \frac{\kappa}{3} \hat{S}^3$$

Important phenomenological consequences :

- Same Pros as MSSM: Hierarchy, Gauge Unification, Dark Matter...
- Solves elegantly the " $\mu$  problem" of the MSSM :  $\mu_{eff} = \lambda \langle S \rangle$ .
- Richer Higgs spectrum than the MSSM : 2 (1) CP-odd Higgs  $A_i$ , 3 (2) CP-even  $H_i^0$ , 1 charged  $H^{\pm}$ .
- Enlarged neutralino sector  $(\widetilde{B}^0, \widetilde{W}^0, \widetilde{H}^0_1, \widetilde{H}^0_2, \widetilde{S}^0) \rightarrow (\tilde{\chi}^0_1, \tilde{\chi}^0_2, \tilde{\chi}^0_3, \tilde{\chi}^0_4, \tilde{\chi}^0_5)$



### **OVERVIEW OF THE MODEL AND MOTIVATIONS**

NMSSM  $\equiv$  *Next-to* Minimal Supersymmetric Standard Model :

$$W_{NMSSM}^{\mathbb{Z}_3} = W_{MSSM}^{\mu=0} + \lambda \hat{S} \hat{H}_u \hat{H}_d + \frac{\kappa}{3} \hat{S}^3$$

Important phenomenological consequences :

- Same Pros as MSSM: Hierarchy, Gauge Unification, Dark Matter...
- Solves elegantly the " $\mu$  problem" of the MSSM :  $\mu_{eff} = \lambda \langle S \rangle$ .
- Richer Higgs spectrum than the MSSM : 2 (1) CP-odd Higgs  $A_i$ , 3 (2) CP-even  $H_i^0$ , 1 charged  $H^{\pm}$ .
- ► Enlarged neutralino sector  $(\widetilde{B}^0, \widetilde{W}^0, \widetilde{H}_1^0, \widetilde{H}_2^0, \widetilde{S}^0) \rightarrow (\widetilde{\chi}_1^0, \widetilde{\chi}_2^0, \widetilde{\chi}_3^0, \widetilde{\chi}_4^0, \widetilde{\chi}_5^0)$
- ${}^{\rm \mbox{\scriptsize sol}}$  Additional F-term + doublet-singlet mixing makes it easier to get  $m_h^{\rm SM} \sim 125$  GeV
- Solution Evade LHC SUSY constraints by hiding  $\not\!\!\!E_T$  (visible energy diluted)
- Solution Easier to get low mass DM (thanks to approx. U(1) R/PQ sym.)
- Successful EW baryogenesis (allows 1<sup>st</sup> order PT)
- rs . . .

- Like in the MSSM, the SM-like Higgs mass gets large rad. cor.
- Rad. cor. in Higgs production/decays can also be large
- To match planned exp. accuracy in Higgs measurements, inclusion of loop corrections mandatory



- ► Like in the MSSM, the SM-like Higgs mass gets large rad. cor.
- Rad. cor. in Higgs production/decays can also be large
- To match planned exp. accuracy in Higgs measurements, inclusion of loop corrections mandatory

#### AUTOMATIC TOOLS AVAILABLE ON THE MARKET

- <u>MMSSMTools</u>: Spectrum gen. + Decays + DM + Constraints (Das,Domingo,Ellwanger,Gunion,Hugonie,Jean-Louis,Teixeira)
- <u>SPheno and SARAH</u>: Spectrum generator + Decays + Constraints (Porod, Staub, Goodsell,Nickel)
- <u>NMSSMCALC</u>: Higgs masses + decays (Baglio, Gröber, Mühlleitner, Nhung, Rzehak, Spira, Streicher, Walz)
- Flexible SUSY: Spectrum Generator (Athron, Park, Stöckinger, Voigt)
- SOFTSUSY: Spectrum generator (Allanach et. al)



- ► Like in the MSSM, the SM-like Higgs mass gets large rad. cor.
- Rad. cor. in Higgs production/decays can also be large
- To match planned exp. accuracy in Higgs measurements, inclusion of loop corrections mandatory

#### AUTOMATIC TOOLS AVAILABLE ON THE MARKET

- <u>MMSSMTools</u>: Spectrum gen. + Decays + DM + Constraints (Das,Domingo,Ellwanger,Gunion,Hugonie,Jean-Louis,Teixeira)
- SPheno and SARAH: Spectrum generator + Decays + Constraints (Porod, Staub, Goodsell,Nickel)
- <u>NMSSMCALC</u>: Higgs masses + decays (Baglio, Gröber, Mühlleitner, Nhung, Rzehak, Spira, Streicher, Walz)
- Flexible SUSY: Spectrum Generator (Athron, Park, Stöckinger, Voigt)
- SOFTSUSY: Spectrum generator (Allanach et. al)
- All the tools compute their spectrum and decays with various approximations, scales, schemes and loop order
- Comparison between them CPC 202 (2016), 113 (Staub et. al)



- ► Like in the MSSM, the SM-like Higgs mass gets large rad. cor.
- Rad. cor. in Higgs production/decays can also be large
- To match planned exp. accuracy in Higgs measurements, inclusion of loop corrections mandatory

#### AUTOMATIC TOOLS AVAILABLE ON THE MARKET

- <u>MMSSMTools</u>: Spectrum gen. + Decays + DM + Constraints (Das,Domingo,Ellwanger,Gunion,Hugonie,Jean-Louis,Teixeira)
- <u>SPheno and SARAH</u>: Spectrum generator + Decays + Constraints (Porod, Staub, Goodsell,Nickel)
- <u>NMSSMCALC</u>: Higgs masses + decays (Baglio, Gröber, Mühlleitner, Nhung, Rzehak, Spira, Streicher, Walz)
- Flexible SUSY: Spectrum Generator (Athron, Park, Stöckinger, Voigt)
- SOFTSUSY: Spectrum generator (Allanach et. al)
- All the tools compute their spectrum and decays with various approximations, scales, schemes and loop order
- Comparison between them CPC 202 (2016), 113 (Staub et. al)

SLOOPS: Automatic generation of any process (mass, decay, cross-section) at 1L with EW & QCD corrections.

Orsay

# AUTOMATIC TOOL FOR ONE-LOOP CALCULATIONS: SLOOPS



- Automatic derivation of the CT Feynman rules and computation of the CT's
- Models renormalized: SM, MSSM, NMSSM, Wino DM, xSM (w/ & w/o vs),
- Modularity between different renormalisation schemes.
- Non-linear gauge fixing.
- Checks: results UV,IR finite and gauge independent.

http://code.sloops.free.fr/

LPT Orsav

### **APPLICATION TO DM: GAMMA-RAY LINES**

G.C, A. Semenov JHEP 1112 (2011) 055; G.C, M.J. Dolan, C. McCabe JCAP 1302 016

- $\chi\chi 
  ightarrow \gamma\gamma$  is a smoking gun signature of DM and  $E_\gamma \sim m_\chi$
- Interesting process to look at to test the good implementation of the framework at LO (no renormalisation needed).
- Main mechanism in the NMSSM



- $\blacktriangleright \langle \sigma v \rangle_{\gamma\gamma/Z^0}$  computed with SloopS extended to deal with the NMSSM & all contributions
- ► GI checked thanks to an extended NLG GF for the NMSSM GC,Semenov '11
- Modified version of LOOPTOOLS to handle vanishing Gram determinants at v = 0 Boudjema,Semenov,Temes '05



### **APPLYING FERMI-LAT CONSTRAINTS**

- $\blacktriangleright$  FERMI satellite has a dedicated search for  $\gamma\text{-lines}$
- Concentrate on low-mass  $m_{\chi}$  which is specific to NMSSM
- Extension of the work performed in (Vazquez et. al '10)
- ▶ Limits taken from *Vertongen*, *Weniger* '11 : extended range  $m_{\chi} \in [1, 300]$  GeV.





### **APPLYING** FERMI-LAT CONSTRAINTS

- $\blacktriangleright$  FERMI satellite has a dedicated search for  $\gamma\text{-lines}$
- Concentrate on low-mass  $m_{\chi}$  which is specific to NMSSM
- Extension of the work performed in (Vazquez et. al '10)
- ▶ Limits taken from *Vertongen*, *Weniger* '11 : extended range  $m_{\chi} \in [1, 300]$  GeV.



Routine of  $\langle \sigma v \rangle_{\gamma\gamma}$  through SLOOPS built-in MicrOMEGAs (MSSM/NMSSM)



### **APPLICATION TO HIGGS: LOOP-INDUCED DECAYS**

► Use of an effective  $\mathcal{V}_{rad.}^{S}$  (GC, Domingo '12) to compute loop-induced  $h_{i}^{0} \rightarrow \gamma \gamma / Z^{0}$  decays at the right kin. in a GI invariant way through the interface of SLOOPS with NMSSMTools (Effective potential now present in standard version of NMSSMTools)

Routines incorporated within MicrOMEGAs (private version)



# **APPLICATION TO HIGGS: LOOP-INDUCED DECAYS**

► Use of an effective  $\mathcal{V}_{rad.}^{S}$  (GC, Domingo '12) to compute loop-induced  $h_{i}^{0} \rightarrow \gamma \gamma / Z^{0}$  decays at the right kin. in a GI invariant way through the interface of SLOOPS with NMSSMTools (Effective potential now present in standard version of NMSSMTools)

Routines incorporated within MicrOMEGAs (private version)

- ▶ In loop-induced *H* decays, New Physics enters already at the LO level
- ${}^{\scriptstyle
  m I\!S}$  No significant deviation from SM observed in  $\mu_{\gamma\gamma}$
- $^{\rm IS}$  In the SM  $\Gamma^H_{\gamma\gamma}/\Gamma^H_{\gamma Z}\sim 2/3$ , is there room to observe a deviation from the SM of this ratio in the NMSSM ?



# **APPLICATION TO HIGGS: LOOP-INDUCED DECAYS**

▶ Use of an effective  $\mathcal{V}_{rad.}^{S}$  (GC, Domingo '12) to compute loop-induced  $h_{i}^{0} \rightarrow \gamma \gamma / Z^{0}$  decays at the right kin. in a GI invariant way through the interface of SLOOPS with NMSSMTools (Effective potential now present in standard version of NMSSMTools)

Routines incorporated within MicrOMEGAs (private version)

- ▶ In loop-induced *H* decays, New Physics enters already at the LO level
- ${}^{\scriptstyle
  m I\!S}$  No significant deviation from SM observed in  $\mu_{\gamma\gamma}$
- $^{\rm IS}$  In the SM  $\Gamma^{H}_{\gamma\gamma}/\Gamma^{H}_{\gamma Z}\sim 2/3$ , is there room to observe a deviation from the SM of this ratio in the NMSSM ?

| $100 \ {\rm GeV} <$ | $\mu$                       | < 500 ~GeV           |
|---------------------|-----------------------------|----------------------|
| $100~{\rm GeV} <$   | $M_2$                       | $< 1000 \ GeV$       |
| $0  {\rm GeV} <$    | $t_{eta}$                   | < 20                 |
| 0 <                 | $\lambda,\kappa$            | < 0.7                |
| $100 \ {\rm GeV} <$ | $A_{\lambda}$               | $< 1000 \ {\rm GeV}$ |
| -1000  GeV <        | $A_{\kappa}$                | $< -100 { m ~GeV}$   |
| -3000  GeV <        | $A_t$                       | $< 3000  {\rm GeV}$  |
| $400~{\rm GeV} <$   | $m_{\tilde{Q},\tilde{U}_2}$ | $< 2000  {\rm GeV}$  |

- ▶  $m_h^{
  m SM} \in [122, 128]$  GeV
- Various constraints from NMSSMTools
- Collider constraints on Higgs from HiggsBounds
- Higgs fits constraints from HiggsSignals



# **POSSIBLE DEVIATIONS IN** $h_{1,2}^0 \rightarrow \gamma Z^0$ ?

If  $h_1^0 \equiv H_{125} \rightarrow h_1^0 \rightarrow \gamma Z^0$  similar to SM expectations, look at  $h_2^0 \equiv H_{125}$ 



# **POSSIBLE DEVIATIONS IN** $h_{1,2}^0 \rightarrow \gamma Z^0$ ?

If  $h_1^0 \equiv H_{125} \rightarrow h_1^0 \rightarrow \gamma Z^0$  similar to SM expectations, look at  $h_2^0 \equiv H_{125}$ 



- ▶ Some enhancement for  $a)S_{h23} < -0.5, b)S_{h23} > 0.7, c)S_{h23} \approx 0.4$
- $h_2^0$  significant doublet & singlet comp.
- $\mu_{\text{VBF}}$  mostly correlated with  $\mu_{gg}$ .
- Large deviation could indicate a need for a lighter Higgs boson





#### SECTORS

- $\ensuremath{\,\cong}$  Fermion  $\rightarrow$  as in the SM
- $\ensuremath{\,^{\tiny \hbox{\tiny IM}}}$  Gauge  $\rightarrow$  as in the SM
- $\blacksquare$  Sfermion  $\rightarrow$  as in the MSSM







G. Bélanger, V. Bizouard, F. Boudjema, GC, PRD93 (2016) 11, 115031 and ArXiv:1612.XXXX

All in all we have

$$\underbrace{g,g'}_{\text{SM}},\underbrace{v_u,v_d,s,\lambda,\kappa}_{\text{Higgs}\&\tilde{\chi}},A_{\lambda},A_{\kappa},m_{H_u}^2,m_{H_d}^2,m_{S}^2,M_1,M_2$$





All in all we have

$$\underbrace{\mathbf{g}, \mathbf{g}', \mathbf{v}}_{\text{gauge}}, \underbrace{\mathbf{t}_{\beta}, \lambda, \kappa, \mu}_{\mathbf{t}, \mathbf{A}_{\lambda}, \mathbf{A}_{\kappa}, m_{H_{u}}^{2}, m_{H_{d}}^{2}, m_{S}^{2}, M_{1}, M_{2}$$



G. Bélanger, V. Bizouard, F. Boudjema, GC, PRD93 (2016) 11, 115031 and ArXiv:1612.XXXX

All in all we have

$$\underbrace{g,g',v}_{\text{gauge}}, \underbrace{t_{\beta}, \lambda, \kappa, \mu}_{H_{\beta}, \lambda, \kappa, \mu}, A_{\lambda}, A_{\kappa}, m_{H_{u}}^{2}, m_{H_{d}}^{2}, m_{5}^{2}, M_{1}, M_{2}$$

we trade some for physical parameters



LPT Orsav



we trade some for physical parameters

$$e, M_Z, s_W, \overbrace{t_\beta, \lambda, \kappa, \mu}^{\mathsf{Higgs} \& \tilde{\chi}} \underbrace{A_{\lambda}, A_{\kappa}, t_{h^0_u}, t_{h^0_d}, t_{h^0_s}}_{\mathsf{Higgs}}, \overbrace{M_1, M_2}^{\tilde{\chi}}$$

$$\ \text{Min. cond.} \implies \boxed{t_{h_i^0} \equiv 0}, \ i = u, d, s. \ \text{At 1L} \ \delta t_{h_i^0} = -t_{h_i^0}^{loop}$$

- Remains 8 counterterms to be determined .
- Equivalently, we need to find 8 exp inputs/definitions which are linked unambigously to the original 8 parameters
- $\mathbb{I}$   $\mathcal{W}_8$  matrix system to invert with  $\delta t_{\beta}, \delta \lambda, \delta \kappa, \delta \mu, \delta A_{\lambda}, \delta A_{\kappa}, \delta M_1, \delta M_2$  as variables

$$\overset{\mathcal{M}_{2},\mu}{\overset{\mathcal{W}_{2}}{\overset{\mathcal{W}_{2}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U}}{\overset{\mathcal{U$$



$$\mathcal{W}_{8} = \underbrace{\mathcal{W}_{2}^{\chi^{\pm}}}_{\mathcal{W}_{2}^{\chi^{\pm}}} \oplus \underbrace{\mathcal{W}_{4}^{\chi^{0}}}_{\mathcal{W}_{4}^{\chi^{0}}} \oplus \underbrace{\mathcal{W}_{2}^{A^{0}}}_{\mathcal{W}_{2}^{\Lambda^{0}}} \rightarrow OS_{ijkl} \text{ (suited when only gaugino decays)}$$

$$\mathcal{W}_{8} = \underbrace{\mathcal{W}_{2}^{\chi^{\pm}}}_{\mathcal{W}_{2}^{\chi^{\pm}}} \oplus \underbrace{\mathcal{W}_{4}^{\chi^{0},A^{0},H^{\pm}(h^{0})}}_{\mathcal{H}_{3+3}} \rightarrow OS_{ijkA_{1}A_{2}H^{\pm}(h_{\alpha})}$$



$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$



$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$



#### ON-SHELL SCHEMES WITH MASSES ONLY

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

#### MIXED $\overline{\mathrm{DR}}$ -OS SCHEMES

$$\mathbb{I} \mathcal{W}_{8} = \mathcal{W}_{1, t_{\beta}} \oplus \widetilde{\mathcal{W}_{2}^{\chi^{\pm}}} \oplus \widetilde{\mathcal{W}_{3}^{\chi^{0}}} \oplus \widetilde{\mathcal{W}_{3}^{\chi^{0}}} \to t_{ijk} \text{ (suited when only gaugino decays)}$$

Orsay

#### ON-SHELL SCHEMES WITH MASSES ONLY

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

#### MIXED $\overline{\mathrm{DR}}$ -OS SCHEMES

$$\mathfrak{W}_{8} = \mathcal{W}_{1,t_{\beta}} \oplus \widetilde{\mathcal{W}_{2}^{\chi^{\pm}}} \oplus \widetilde{\mathcal{W}_{3}^{\chi^{0}}} \oplus \widetilde{\mathcal{W}_{2}^{A^{0}}} \to t_{ijk} \text{ (suited when only gaugino decays)}$$

$$\mathfrak{W}_{8} = \mathcal{W}_{1,t_{\beta}} \oplus \widetilde{\mathcal{W}_{2}^{\chi^{\pm}}} \oplus \widetilde{\mathcal{W}_{2+3}^{\chi^{0},A^{0},H^{\pm}(h^{0})}$$

#### ON-SHELL SCHEMES WITH MASSES ONLY

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

#### MIXED DR-OS SCHEMES

$$\mathfrak{W}_{8} = \mathcal{W}_{1,t_{\beta}} \oplus \widetilde{\mathcal{W}_{2}^{\chi^{\pm}}} \oplus \widetilde{\mathcal{W}_{3}^{\chi^{0}}} \oplus \widetilde{\mathcal{W}_{2}^{A^{0}}} \to t_{ijk} \text{ (suited when only gaugino decays)}$$

$$\mathfrak{W}_{8} = \mathcal{W}_{1,t_{\beta}} \oplus \widetilde{\mathcal{W}_{2}^{\chi^{\pm}}} \oplus \widetilde{\mathcal{W}_{2+3}^{\chi^{0},A^{0},H^{\pm}(h^{0})}$$

#### Or simply go all $\overline{\mathrm{DR}}$

CHALONS Guillaume

AUTOMATIC LOOP CALCULATIONS OF NMSSM PROCESSES WITH SLOOPS

LPT Orsay

### **APPLICATION TO HIGGS DECAYS**

**Point A**( $Q_{susy} = 1117.25$ GeV,  $m_t = 173$ GeV,  $m_{h_1^0} = 125.45$ GeV(1-loop OS))

| <i>M</i> <sub>1</sub>   | 700    | $\lambda$       | 0.1       | $A_{\kappa}$ | 0    | m <sub>õ3</sub>   | 1740 | $m_{\tilde{D},\tilde{U}_{1,2}}$ | 1000 |
|-------------------------|--------|-----------------|-----------|--------------|------|-------------------|------|---------------------------------|------|
| <i>M</i> <sub>2</sub>   | 1000   | $\kappa$        | 0.1       | $A_t$        | 4000 | $m_{\tilde{U}_3}$ | 800  | $m_{\tilde{L}_3}$               | 1000 |
| M <sub>3</sub>          | 1000   | $\mu$           | 120       | Ab           | 1000 | $m_{\tilde{D}_3}$ | 1000 | m <sub>ĩ3</sub>                 | 1000 |
| tβ                      | 10     | $A_{\lambda}$   | 150       | A,           | 1000 | m <sub>Õ1,2</sub> | 1000 | $m_{\tilde{L},\tilde{l}_{1,2}}$ | 1000 |
| $\lambda A_{\lambda} =$ | 15GeV, | $A_t/A_\lambda$ | $\sim 27$ |              |      |                   |      | ,                               |      |

**Point B**( $Q_{susy} = 753.55$ GeV,  $m_t = 146.94$ GeV,  $m_{h_s^0} = 124.44$ GeV(1-loop OS))

| <i>M</i> <sub>1</sub>   | 120    | $\lambda$     | 0.67                 | $A_{\kappa}$ | 0    | m <sub>Õ3</sub>   | 750  | $m_{\tilde{D},\tilde{U}_{1,2}}$ | 1500 |   |
|-------------------------|--------|---------------|----------------------|--------------|------|-------------------|------|---------------------------------|------|---|
| <i>M</i> <sub>2</sub>   | 300    | $\kappa$      | 0.2                  | <b>A</b> t   | 1000 | $m_{\tilde{U}_3}$ | 750  | $m_{\tilde{L}_3}$               | 1500 |   |
| M <sub>3</sub>          | 1500   | $\mu$         | 200                  | Ab           | 1000 | $m_{\tilde{D}_3}$ | 1500 | $m_{\tilde{l}_3}$               | 1500 |   |
| tβ                      | 1.92   | $A_{\lambda}$ | 405                  | A            | 1000 | m <sub>Õ1,2</sub> | 1500 | $m_{\tilde{L},\tilde{l}_{1,2}}$ | 1500 | 4 |
| $\lambda A_{\lambda} =$ | 271GeV | $A_t/A_t$     | $_{\lambda}\sim 2.5$ | 1            |      | · · · · ·         |      |                                 |      |   |

LPT Orsay

### **APPLICATION TO HIGGS DECAYS**

|                                                                                             |                   | Point A | Point B |  |  |  |  |
|---------------------------------------------------------------------------------------------|-------------------|---------|---------|--|--|--|--|
| h <sup>0</sup> 1                                                                            | h <sup>0</sup> d  | 1.1%    | 22.5%   |  |  |  |  |
|                                                                                             | hŪ                | 98.6%   | 67.4%   |  |  |  |  |
|                                                                                             | h <sub>s</sub> 0  | 0.3%    | 10.1%   |  |  |  |  |
|                                                                                             |                   |         |         |  |  |  |  |
| h <sub>2</sub> 0                                                                            | h <sup>0</sup> d  | 0.1%    | 0.%     |  |  |  |  |
|                                                                                             | h <sup>0</sup> U  | 0.3%    | 12.5%   |  |  |  |  |
|                                                                                             | h_s^0             | 99.6%   | 87.5%   |  |  |  |  |
|                                                                                             |                   |         |         |  |  |  |  |
| h <sup>0</sup> 3                                                                            | h <sup>0</sup> d  | 98.8%   | 77.5%   |  |  |  |  |
|                                                                                             | h <sup>0</sup> u  | 1.1%    | 19.7%   |  |  |  |  |
|                                                                                             | h <sub>s</sub> 0  | 0.1%    | 2.8%    |  |  |  |  |
|                                                                                             |                   |         |         |  |  |  |  |
| A <sup>0</sup> 1                                                                            | $a_d^0$           | 0%      | 1.8%    |  |  |  |  |
|                                                                                             | a <sup>0</sup> _U | 0%      | 0.5%    |  |  |  |  |
|                                                                                             | $a_s^0$           | 100%    | 97.7%   |  |  |  |  |
|                                                                                             |                   |         |         |  |  |  |  |
| A_2^0                                                                                       | $a_d^0$           | 99.0%   | 76.9%   |  |  |  |  |
|                                                                                             | a <sup>0</sup> _U | 1.0%    | 20.8%   |  |  |  |  |
| a <sub>s</sub> <sup>0</sup> 0.0% 2.3%                                                       |                   |         |         |  |  |  |  |
| Point A: $h_u$ , $h_s$ , $h_d$ , $a_s$ , $a_d$                                              |                   |         |         |  |  |  |  |
| Point B: h <sub>U</sub> , h <sub>S</sub> , h <sub>d</sub> , a <sub>S</sub> , a <sub>d</sub> |                   |         |         |  |  |  |  |

|                                                               |                 | Point A | Point B |  |  |  |
|---------------------------------------------------------------|-----------------|---------|---------|--|--|--|
| $\tilde{\chi}_1^0$                                            | $\tilde{B}^0$   | -       | 56.6%   |  |  |  |
| •                                                             | ₩ <sup>0</sup>  | -       | 32.3%   |  |  |  |
|                                                               | $\tilde{h}^{0}$ | 98.4%   | 10.3%   |  |  |  |
|                                                               | $\tilde{s}^0$   | 0.77%   | 0.8%    |  |  |  |
| $\tilde{\chi}_{2}^{0}$                                        | $\tilde{B}^0$   | -       | 4.0%    |  |  |  |
| -                                                             | Ŵ <sup>0</sup>  | -       | 2.6%    |  |  |  |
|                                                               | $\tilde{h}^{0}$ | 99.5%   | 19.3%   |  |  |  |
|                                                               | $\tilde{s}^0$   | -       | 74.0%   |  |  |  |
| $\tilde{\chi}_{3}^{0}$                                        | ₿ <sup>0</sup>  | -       | 10.1%   |  |  |  |
| U                                                             | Ŵ <sup>0</sup>  | -       | -       |  |  |  |
|                                                               | $\tilde{h}^{0}$ | 0.9%    | 78.9%   |  |  |  |
|                                                               | $\tilde{s}^0$   | 99.1%   | 11.0%   |  |  |  |
| $\tilde{\chi}_{4}^{0}$                                        | ₿ <sup>0</sup>  | 99.6%   | 18.1%   |  |  |  |
| -                                                             | Ŵ <sup>0</sup>  | -       | 12.3%   |  |  |  |
|                                                               | $\tilde{h}^{0}$ | -       | 55.8%   |  |  |  |
|                                                               | $\tilde{s}^0$   | -       | 13.7%   |  |  |  |
| $\tilde{\chi}_{5}^{0}$                                        | ₿ <sup>0</sup>  | -       | 11.2%   |  |  |  |
| 5                                                             | ₩ <sup>0</sup>  | 99.3%   | 52.8%   |  |  |  |
|                                                               | $\tilde{h}^{0}$ | 0.69%   | 35.7%   |  |  |  |
|                                                               | $\tilde{s}^0$   | -       | 0.4%    |  |  |  |
| Point A: <i>ĥ</i> , <i>ĥ</i> , <i>ŝ</i> , <i>ĥ</i> , <i>ŵ</i> |                 |         |         |  |  |  |
| Point B: ĎěĎů                                                 |                 |         |         |  |  |  |



#### Beware. B much more mixing, A quite pure

CHALONS Guillaume

AUTOMATIC LOOP CALCULATIONS OF NMSSM PROCESSES WITH SLOOPS

▶ singlets: 
$$h_2^0, A_1^0, \tilde{\chi}_3^0, m_{h_2^0} = 240 \text{ GeV}, m_{h_3^0, A_2^0, H^{\pm}} \sim 570 \text{ GeV},$$
  
 $Q_{\text{SUSY}} = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}} = 1117 \text{ GeV}$ 

| Decays | $t_{134A_1A_2}(Q_{\rm SUSY})$ | $OS_{34h_2A_1A_2H^+}$ | $\overline{\mathrm{DR}}(m_{parent})$ | $\overline{\mathrm{DR}}(Q_{\mathrm{SUSY}})$ |
|--------|-------------------------------|-----------------------|--------------------------------------|---------------------------------------------|



▶ singlets: 
$$h_2^0, A_1^0, \tilde{\chi}_3^0, m_{h_2^0} = 240 \text{ GeV}, m_{h_3^0, A_2^0, H^{\pm}} \sim 570 \text{ GeV},$$
  
 $Q_{\text{SUSY}} = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}} = 1117 \text{ GeV}$ 

| Decays                         | $t_{134A_1A_2}(Q_{\mathrm{SUSY}})$ | $OS_{34h_2A_1A_2H^+}$ | $\overline{\mathrm{DR}}(m_{\scriptscriptstyle parent})$ | $\overline{\mathrm{DR}}(Q_{\mathrm{SUSY}})$ |
|--------------------------------|------------------------------------|-----------------------|---------------------------------------------------------|---------------------------------------------|
| $h_2^0  ightarrow A_1^0 A_1^0$ | (128%)                             | (-12%)                | (0.4%)                                                  | (-0.4%)                                     |

■ At LO (with 
$$(A_{\kappa} = 0)$$
,  $g_{h_2^0 A_1^0 A_1^0}$  stems from  $\kappa^2 S^4$   
 $\rightarrow g_{h_2^0 A_1^0 A_1^0} \propto \kappa^2 s \propto (\kappa s)^2 / s \propto \lambda / \mu(\kappa s)^2 \sim \lambda / m_{\widetilde{H}^{\pm}} \times m_{\widetilde{S}^0}^2$ .



▶ singlets: 
$$h_2^0, A_1^0, \tilde{\chi}_3^0, m_{h_2^0} = 240 \text{ GeV}, m_{h_3^0, A_2^0, H^{\pm}} \sim 570 \text{ GeV},$$
  
 $Q_{\text{SUSY}} = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}} = 1117 \text{ GeV}$ 

| Decays                         | $t_{134A_1A_2}(Q_{\mathrm{SUSY}})$ | $OS_{34h_2A_1A_2H^+}$ | $\overline{\mathrm{DR}}(m_{\scriptscriptstyle parent})$ | $\overline{\mathrm{DR}}(Q_{\mathrm{SUSY}})$ |
|--------------------------------|------------------------------------|-----------------------|---------------------------------------------------------|---------------------------------------------|
| $h_2^0  ightarrow A_1^0 A_1^0$ | (128%)                             | (-12%)                | (0.4%)                                                  | (-0.4%)                                     |

■ At LO (with (
$$A_{\kappa} = 0$$
),  $g_{h_2^0 A_1^0 A_1^0}$  stems from  $\kappa^2 S^4$   
 $\rightarrow g_{h_2^0 A_1^0 A_1^0} \propto \kappa^2 s \propto (\kappa s)^2 / s \propto \lambda / \mu(\kappa s)^2 \sim \lambda / m_{\widetilde{H}^{\pm}} \times m_{\widetilde{S}^0}^2$ .

 $m_{\tilde{5}0}$  constrains  $(\kappa s)^2$  and  $m_{\tilde{H}^{\pm}}$  constrains  $\mu$  well. Finite shift on  $\lambda$  is key. We have

$$\delta\lambda/\lambda|_{\rm fin.}^{\rm t_{134}}=$$
 62.26% and  $\delta\lambda/\lambda|_{\rm fin.}^{\rm OS}=-7.88\%$ 

and loop correction is  $\delta\Gamma/\Gamma \sim 2\delta\lambda/\lambda$  due to finite part of CT.



▶ singlets: 
$$h_2^0, A_1^0, \tilde{\chi}_3^0, m_{h_2^0} = 240 \text{ GeV}, m_{h_3^0, A_2^0, H^{\pm}} \sim 570 \text{ GeV},$$
  
 $Q_{\text{SUSY}} = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}} = 1117 \text{ GeV}$ 

| Decays                         | $t_{134A_1A_2}(Q_{\mathrm{SUSY}})$ | $OS_{34h_2A_1A_2H^+}$ | $\overline{\mathrm{DR}}(m_{\scriptscriptstyle parent})$ | $\overline{\mathrm{DR}}(Q_{\mathrm{SUSY}})$ |
|--------------------------------|------------------------------------|-----------------------|---------------------------------------------------------|---------------------------------------------|
| $h_2^0  ightarrow A_1^0 A_1^0$ | (128%)                             | (-12%)                | (0.4%)                                                  | (-0.4%)                                     |

■ At LO (with (
$$A_{\kappa} = 0$$
),  $g_{h_2^0 A_1^0 A_1^0}$  stems from  $\kappa^2 S^4$   
 $\rightarrow g_{h_2^0 A_1^0 A_1^0} \propto \kappa^2 s \propto (\kappa s)^2 / s \propto \lambda / \mu(\kappa s)^2 \sim \lambda / m_{\widetilde{H}^{\pm}} \times m_{\widetilde{S}^0}^2$ .

 $m_{\tilde{5}^0}$  constrains  $(\kappa s)^2$  and  $m_{\tilde{H}^{\pm}}$  constrains  $\mu$  well. Finite shift on  $\lambda$  is key. We have

$$\delta\lambda/\lambda|_{\rm fin.}^{\rm t_{134}}=$$
 62.26% and  $\delta\lambda/\lambda|_{\rm fin.}^{\rm OS}=-7.88\%$ 

and loop correction is  $\delta\Gamma/\Gamma \sim 2\delta\lambda/\lambda$  due to finite part of CT.

Small  $\overline{\text{DR}}$  corrections  $\rightarrow$  pure virtual corrections negligible and  $\kappa, s$  do not run much (confirmed if one inspects the resp.  $\beta_{\kappa,s}$  functions).

LPT Orsav

▶ singlets: 
$$h_2^0, A_1^0, \tilde{\chi}_3^0, m_{h_2^0} = 240 \text{ GeV}, m_{h_3^0, A_2^0, H^{\pm}} \sim 570 \text{ GeV},$$
  
 $Q_{\text{SUSY}} = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}} = 1117 \text{ GeV}$ 

| Decays                                                        | $t_{134A_1A_2}(Q_{\mathrm{SUSY}})$ | $OS_{34h_2A_1A_2H^+}$ | $\overline{\mathrm{DR}}(m_{\scriptscriptstyle parent})$ | $\overline{\mathrm{DR}}(Q_{\mathrm{SUSY}})$ |
|---------------------------------------------------------------|------------------------------------|-----------------------|---------------------------------------------------------|---------------------------------------------|
| $h_2^0  ightarrow A_1^0 A_1^0$                                | (128%)                             | (-12%)                | (0.4%)                                                  | (-0.4%)                                     |
| $h_3^0  ightarrow {	ilde \chi}_1^0 {	ilde \chi}_3^0$          | (122%)                             | (-3%)                 | (2%)                                                    | (0.3%)                                      |
| $h_3^0  ightarrow 	ilde{\chi}_2^0 \overline{	ilde{\chi}_3^0}$ | (126%)                             | (-35%)                | (3%)                                                    | (1.1%)                                      |
| $A_2^0  ightarrow 	ilde{\chi}_1^0 	ilde{\chi}_3^0$            | (130%)                             | (-31%)                | (8%)                                                    | (6.2%)                                      |
| $A^{ar 0}_2 	o 	ilde\chi^{ar 0}_2 	ilde\chi^{ar 0}_3$         | (122%)                             | (-5%)                 | (-0.4%)                                                 | (-1.9%)                                     |
| $H^+  ightarrow 	ilde{\chi}_1^+ 	ilde{\chi}_3^0$              | (125%)                             | (-18%)                | (3%)                                                    | (1.1%)                                      |

Same usual suspects, corrections in  $t_{134}$  accounted for by  $\delta\lambda|_{\mathrm{fin.}}$ . In  $OS_{34h_2A_1A_2H^+}$  renormalisation of  $\delta t_\beta$  kicks in.



► singlets: 
$$h_2^0, A_1^0, \tilde{\chi}_3^0, m_{h_2^0} = 240 \text{ GeV}, m_{h_3^0, A_2^0, H^{\pm}} \sim 570 \text{ GeV},$$
  
 $Q_{\text{SUSY}} = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}} = 1117 \text{ GeV}$ 

| Decays                                                        | $t_{134A_1A_2}(Q_{\mathrm{SUSY}})$ | $OS_{34h_2A_1A_2H^+}$ | $\overline{\mathrm{DR}}(m_{\scriptscriptstyle parent})$ | $\overline{\mathrm{DR}}(\mathcal{Q}_{\mathrm{SUSY}})$ |
|---------------------------------------------------------------|------------------------------------|-----------------------|---------------------------------------------------------|-------------------------------------------------------|
| $h_2^0 \rightarrow A_1^0 A_1^0$                               | (128%)                             | (-12%)                | (0.4%)                                                  | (-0.4%)                                               |
| $h_3^0  ightarrow 	ilde{\chi}_1^0 	ilde{\chi}_3^0$            | (122%)                             | (-3%)                 | (2%)                                                    | (0.3%)                                                |
| $h_3^0  ightarrow 	ilde{\chi}_2^0 \overline{	ilde{\chi}_3^0}$ | (126%)                             | (-35%)                | (3%)                                                    | (1.1%)                                                |
| $A_2^0  ightarrow 	ilde{\chi}_1^0 	ilde{\chi}_3^0$            | (130%)                             | (-31%)                | (8%)                                                    | (6.2%)                                                |
| $A^{ar 0}_2 	o 	ilde\chi^{ar 0}_2 	ilde\chi^{ar 0}_3$         | (122%)                             | (-5%)                 | (-0.4%)                                                 | (-1.9%)                                               |
| $H^+  ightarrow {	ilde \chi}^+_1 {	ilde \chi}^0_3$            | (125%)                             | (-18%)                | (3%)                                                    | (1.1%)                                                |
| $h_3^0  ightarrow h_1^0 \overline{h_2^0}$                     | (116%)                             | (79%)                 | (52%)                                                   | (-1.7%)                                               |

Solution For  $t_{134} \& OS_{34h_2A_1A_2H^+}$ : same reasons as before



► singlets: 
$$h_2^0, A_1^0, \tilde{\chi}_3^0, m_{h_2^0} = 240 \text{ GeV}, m_{h_3^0, A_2^0, H^{\pm}} \sim 570 \text{ GeV},$$
  
 $Q_{\text{SUSY}} = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}} = 1117 \text{ GeV}$ 

| Decays                                                         | $t_{134A_1A_2}(Q_{\mathrm{SUSY}})$ | $OS_{34h_2A_1A_2H^+}$ | $\overline{\mathrm{DR}}(m_{\scriptscriptstyle parent})$ | $\overline{\mathrm{DR}}(Q_{\mathrm{SUSY}})$ |
|----------------------------------------------------------------|------------------------------------|-----------------------|---------------------------------------------------------|---------------------------------------------|
| $h_2^0 \rightarrow A_1^0 A_1^0$                                | (128%)                             | (-12%)                | (0.4%)                                                  | (-0.4%)                                     |
| $h_3^0  ightarrow 	ilde{\chi}_1^0 	ilde{\chi}_3^0$             | (122%)                             | (-3%)                 | (2%)                                                    | (0.3%)                                      |
| $h_3^0 \rightarrow 	ilde{\chi}_2^0 \overline{	ilde{\chi}_3^0}$ | (126%)                             | (-35%)                | (3%)                                                    | (1.1%)                                      |
| $A_2^0  ightarrow 	ilde{\chi}_1^0 	ilde{\chi}_3^0$             | (130%)                             | (-31%)                | (8%)                                                    | (6.2%)                                      |
| $A^{ar 0}_2 	o 	ilde\chi^{ar 0}_2 	ilde\chi^{ar 0}_3$          | (122%)                             | (-5%)                 | (-0.4%)                                                 | (-1.9%)                                     |
| $H^+  ightarrow {	ilde \chi}^+_1 {	ilde \chi}^0_3$             | (125%)                             | (-18%)                | (3%)                                                    | (1.1%)                                      |
| $h_3^0  ightarrow h_1^0 \overline{h_2^0}$                      | (116%)                             | (79%)                 | (52%)                                                   | (-1.7%)                                     |

Solution For  $t_{134}$  &  $OS_{34h_2A_1A_2H^+}$ : same reasons as before

 $\label{eq:large} \hbox{${\rm I}$$ arge corrections $\overline{{\rm DR}}$ ? Pt A has small mixing: $g_{h_1h_2h_3} \simeq g_{h_uh_sh_d} \sim \lambda $ $ A_\lambda $ + 2\kappa\mu$. }$ 

$$16\pi^2 \frac{1}{A_\lambda} \frac{dA_\lambda}{A_\lambda} \sim 3h_t^2 \frac{A_t}{A_\lambda} \quad \text{recall} \quad \boxed{A_t/A_\lambda \sim 27!!}$$



► singlets: 
$$h_2^0, A_1^0, \tilde{\chi}_3^0, m_{h_2^0} = 240 \text{ GeV}, m_{h_3^0, A_2^0, H^{\pm}} \sim 570 \text{ GeV},$$
  
 $Q_{\text{SUSY}} = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}} = 1117 \text{ GeV}$ 

| Decays                                                | $t_{134A_1A_2}(Q_{\mathrm{SUSY}})$ | $OS_{34h_2A_1A_2H^+}$ | $\overline{\mathrm{DR}}(m_{\scriptscriptstyle parent})$ | $\overline{\mathrm{DR}}(Q_{\mathrm{SUSY}})$ |
|-------------------------------------------------------|------------------------------------|-----------------------|---------------------------------------------------------|---------------------------------------------|
| $h_2^0  ightarrow A_1^0 A_1^0$                        | (128%)                             | (-12%)                | (0.4%)                                                  | (-0.4%)                                     |
| $h_3^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_3^0$ | (122%)                             | (-3%)                 | (2%)                                                    | (0.3%)                                      |
| $h_3^0  ightarrow 	ilde{\chi}_2^0 	ilde{\chi}_3^0$    | (126%)                             | (-35%)                | (3%)                                                    | (1.1%)                                      |
| $A_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_3^0$ | (130%)                             | (-31%)                | (8%)                                                    | (6.2%)                                      |
| $A^{ar 0}_2 	o 	ilde\chi^{ar 0}_2 	ilde\chi^{ar 0}_3$ | (122%)                             | (-5%)                 | (-0.4%)                                                 | (-1.9%)                                     |
| $H^+  ightarrow {	ilde \chi}^+_1 {	ilde \chi}^0_3$    | (125%)                             | (-18%)                | (3%)                                                    | (1.1%)                                      |
| $h_3^0  ightarrow h_1^0 h_2^0$                        | (116%)                             | (79%)                 | (52%)                                                   | (-1.7%)                                     |

Solution For  $t_{134}$  &  $OS_{34h_2A_1A_2H^+}$ : same reasons as before

 $\label{eq:large corrections $\overline{\mathrm{DR}}$ ? Pt A has small mixing: $g_{h_1h_2h_3} \simeq g_{h_uh_sh_d} \sim \lambda \middle| A_\lambda \middle| + 2\kappa\mu.$ 

$$16\pi^2 \frac{1}{A_\lambda} \frac{dA_\lambda}{A_\lambda} \sim 3h_t^2 \frac{A_t}{A_\lambda} \quad \text{recall} \left[ \frac{A_t/A_\lambda \sim 27!!}{A_\lambda \sim 27!!} \right]$$

 $\blacksquare$  Correction in  $\overline{\mathrm{DR}}$  driven by running of  $A_\lambda$ 



► singlets: 
$$h_2^0, A_1^0, \tilde{\chi}_3^0, m_{h_2^0} = 240 \text{ GeV}, m_{h_3^0, A_2^0, H^{\pm}} \sim 570 \text{ GeV},$$
  
 $Q_{\text{SUSY}} = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}} = 1117 \text{ GeV}$ 

| Decays                                                        | $t_{134A_1A_2}(Q_{\mathrm{SUSY}})$ | $OS_{34h_2A_1A_2H^+}$ | $\overline{\mathrm{DR}}(m_{\scriptscriptstyle parent})$ | $\overline{\mathrm{DR}}(Q_{\mathrm{SUSY}})$ |
|---------------------------------------------------------------|------------------------------------|-----------------------|---------------------------------------------------------|---------------------------------------------|
| $h_2^0 \rightarrow A_1^0 A_1^0$                               | (128%)                             | (-12%)                | (0.4%)                                                  | (-0.4%)                                     |
| $h_3^0  ightarrow 	ilde{\chi}_1^0 	ilde{\chi}_3^0$            | (122%)                             | (-3%)                 | (2%)                                                    | (0.3%)                                      |
| $h_3^0  ightarrow 	ilde{\chi}_2^0 \overline{	ilde{\chi}_3^0}$ | (126%)                             | (-35%)                | (3%)                                                    | (1.1%)                                      |
| $A_2^0  ightarrow 	ilde{\chi}_1^0 	ilde{\chi}_3^0$            | (130%)                             | (-31%)                | (8%)                                                    | (6.2%)                                      |
| $A^{ar 0}_2 	o 	ilde\chi^{ar 0}_2 	ilde\chi^{ar 0}_3$         | (122%)                             | (-5%)                 | (-0.4%)                                                 | (-1.9%)                                     |
| $H^+  ightarrow {	ilde \chi}^+_1 {	ilde \chi}^0_3$            | (125%)                             | (-18%)                | (3%)                                                    | (1.1%)                                      |
| $h_3^0  ightarrow h_1^0 \overline{h_2^0}$                     | (116%)                             | (79%)                 | (52%)                                                   | (-1.7%)                                     |

Solution For  $t_{134}$  &  $OS_{34h_2A_1A_2H^+}$ : same reasons as before

Solution Simpler Corrections  $\overline{\mathrm{DR}}$ ? Pt A has small mixing:  $g_{h_1h_2h_3} \simeq g_{h_uh_sh_d} \sim \lambda |A_{\lambda}| + 2\kappa\mu$ .

$$16\pi^2 \frac{1}{A_\lambda} \frac{dA_\lambda}{A_\lambda} \sim 3h_t^2 \frac{A_t}{A_\lambda} \quad \text{recall} \boxed{A_t/A_\lambda \sim 27!!}$$

- $\blacksquare$  Correction in  $\overline{\mathrm{DR}}$  driven by running of  $A_\lambda$
- An MSSM-like point with large  $A_t$  to reproduce correct  $m_H^{\text{SM}}$  entitled to large EW rad. cor., even in  $\overline{\text{DR}}$ , for decays driven by  $A_{\lambda}$ . For Pt A can be absorbed by setting  $\overline{\mu} = Q_{\text{SUSY}}$ .  $Q_{\text{SUSY}}$  always the right choice ?

> Mixing important  $\lambda = 0.67$ , no pure state, in principle better extraction of counterterms



- Mixing important  $\lambda = 0.67$ , no pure state, in principle better extraction of counterterms

| Decays                                                      | SloopS                  | SloopS                |                                      |                                             |
|-------------------------------------------------------------|-------------------------|-----------------------|--------------------------------------|---------------------------------------------|
|                                                             | $t_{123}(Q_{\rm SUSY})$ | $OS_{12h_2A_1A_2H^+}$ | $\overline{\mathrm{DR}}(m_{parent})$ | $\overline{\mathrm{DR}}(Q_{\mathrm{SUSY}})$ |
| $h_3^0  ightarrow 	ilde{\chi}_1^0 	ilde{\chi}_2^0$          | 10.8%                   | (14%)                 | (5%)                                 | (3%)                                        |
| $h_3^0 \rightarrow A_1^0 Z^-$                               | (8.4%)                  | (3%)                  | (-3%)                                | (-8 %)                                      |
| $h_3^0 \rightarrow h_2^0 h_1^0$                             | (-131.4%)               | (-25%)                | (-106%)                              | (-50%)                                      |
| $h_3^{0} \rightarrow h_2^{\overline{0}} h_2^{\overline{0}}$ | (41.8 %)                | (6%)                  | (13%)                                | (-28%)                                      |
| $A_2^0  ightarrow {	ilde \chi}_1^+ {	ilde \chi}_1^-$        | (8.2 %)                 | (7%)                  | (2%)                                 | (1%)                                        |
| ${\cal A}^0_2 	o 	ilde{\chi}^0_1 	ilde{\chi}^0_1$           | (18.1%)                 | (32%)                 | (2%)                                 | (2%)                                        |
| $A_2^0  ightarrow Zh_2^0$                                   | (-10.27 %)              | (12%)                 | (-16%)                               | (-9%)                                       |
| $A_2^{ar 0}  ightarrow A_1^0 ar h_1^0$                      | (-40.9 %)               | (-0.3%)               | (-32%)                               | (-17%)                                      |
| $H^+  ightarrow {	ilde \chi}_1^+ {	ilde \chi}_2^0$          | (8.4%)                  | (6%)                  | (10%)                                | (8%)                                        |
| $H^+  ightarrow W^+ h_2^0$                                  | (-11%)                  | (11%)                 | (-18%)                               | (-10%)                                      |
| $H^+ \rightarrow W^+ A_1^0$                                 | (7.9%)                  | (2%)                  | (-3%)                                | (-9%)                                       |
| $H^+  ightarrow {	ilde \chi}_1^+ {	ilde \chi}_1^0$          | (12.5 %)                | (21%)                 | (9%)                                 | (9%)                                        |

- > Due to large mixing, dependence on parameters much more involved.
- > Still renormalisation of  $\lambda$ ,  $t_{\beta}$  and running of  $A_{\lambda}$  (although smaller due to smaller  $A_t/A_{\lambda}$ ) lead the corrections
- OS scheme gives reasonable corrections
- For  $\overline{\text{DR}}$  even  $\overline{\mu} = Q_{\text{SUSY}}$  does not absorb all the corrections most probably because  $A_{\lambda}$  is not the only driver of the decay



- ${\tt IS}$  Using <code>SloopS</code>, in principle up to 2  $\rightarrow$  3 processes at the 1L level can be evaluated
- Full on-shell renormalisation (all sectors) of the NMSSM at one-loop completed.
- $\blacksquare$  Various schemes investigated  $\rightarrow$  large scheme dependence for some observables, depending on the scenario
- <sup>ESF</sup> Currently impossible to choose what is the best scheme for reconstructing parameters. As long as only predictions are concerned,  $\overline{\rm DR}$  scheme sufficient but large pure EW corrections are possible in some scenarios (in particular when singlets are involved in MSSM-like points). Not always clear how to tame them by choosing appropriate  $\bar{\mu}$
- Applications to astrophysics, colliders and cosmology (future)
- SloopS is not limited to SUSY model, any renormalisable model (ex: xSM, wino-DM model) can be implemented



#### BACKUP



GC, F. Domingo, PRD86 (2012) 115024; G. Bélanger, V. Bizouard, GC, PRD89 (2014) 9, 095023

• We know  $m_h^{SM} \equiv m_H$  gets large rad. cor.



GC, F. Domingo, PRD86 (2012) 115024; G. Bélanger, V. Bizouard, GC, PRD89 (2014) 9, 095023

- We know  $m_h^{SM} \equiv m_H$  gets large rad. cor.
- To get the right kinematics for its decays, better take  $m_H^{\text{corr}} = \sqrt{s}$  on the external leg for comparison with exp.



GC, F. Domingo, PRD86 (2012) 115024; G. Bélanger, V. Bizouard, GC, PRD89 (2014) 9, 095023

- We know  $m_h^{SM} \equiv m_H$  gets large rad. cor.
- To get the right kinematics for its decays, better take  $m_H^{\text{corr}} = \sqrt{s}$  on the external leg for comparison with exp.
- Couplings of H to scalars/Goldstones also  $\propto m_H \rightarrow$  one should ensure that  $m_H^{\rm kin} \equiv m_H^{\rm coup}$  to maintain gauge invariance



GC, F. Domingo, PRD86 (2012) 115024; G. Bélanger, V. Bizouard, GC, PRD89 (2014) 9, 095023

- We know  $m_h^{SM} \equiv m_H$  gets large rad. cor.
- To get the right kinematics for its decays, better take  $m_H^{\text{corr}} = \sqrt{s}$  on the external leg for comparison with exp.
- Couplings of H to scalars/Goldstones also  $\propto m_H \rightarrow$  one should ensure that  $m_H^{\rm kin} \equiv m_H^{\rm coup}$  to maintain gauge invariance
- Define an effective rad. Higgs potential



GC, F. Domingo, PRD86 (2012) 115024; G. Bélanger, V. Bizouard, GC, PRD89 (2014) 9, 095023

- We know  $m_h^{SM} \equiv m_H$  gets large rad. cor.
- ▶ To get the right kinematics for its decays, better take  $m_H^{\text{corr}} = \sqrt{s}$  on the external leg for comparison with exp.
- Couplings of *H* to scalars/Goldstones also  $\propto m_H \rightarrow$  one should ensure that  $m_H^{\text{kin}} \equiv m_H^{\text{coup}}$  to maintain gauge invariance
- Define an effective rad. Higgs potential

$$\begin{split} \mathcal{V}_{\rm rad.}^{S} &= m_{H_{u}}^{2} |H_{u}|^{2} + m_{H_{d}}^{2} |H_{d}|^{2} + \frac{\lambda_{1}}{2} |H_{d}|^{4} + \frac{\lambda_{2}}{2} |H_{u}|^{4} + \lambda_{3} |H_{u}|^{2} |H_{d}|^{2} + \lambda_{4} |H_{u} \cdot H_{d}|^{2} \\ &+ m_{5}^{2} |S|^{2} + \kappa^{2} |S|^{4} + \left[\frac{A_{5}}{3} S^{3} + h.c.\right] \\ &+ \lambda_{P}^{u} |S|^{2} |H_{u}|^{2} + \lambda_{P}^{d} |S|^{2} |H_{d}|^{2} + \left[A_{ud} S H_{u} \cdot H_{d} + \lambda_{P}^{M} S^{*2} H_{u} \cdot H_{d} + h.c.\right] \end{split}$$

The tree-level conditions resulting from the NMSSM read:

$$\begin{split} \lambda_1^0 &= \frac{g^2 + g'^2}{4} = \lambda_2^0 \quad ; \ \lambda_3^0 = \frac{g^2 - g'^2}{4} \quad ; \ \lambda_4^0 = \lambda^2 - \frac{g^2}{2} \quad ; \ \lambda_P^{u\,0} = \lambda^2 = \lambda_P^{d\,0} ; \\ \lambda_P^{M\,0} &= \lambda \kappa \qquad ; \ A_S^0 = \kappa A_\kappa \qquad ; \ A_{ud}^0 = \lambda A_\lambda \qquad ; \ \kappa^{0\,2} = \kappa^2 \end{split}$$



GC, F. Domingo, PRD86 (2012) 115024; G. Bélanger, V. Bizouard, GC, PRD89 (2014) 9, 095023

- We know  $m_h^{SM} \equiv m_H$  gets large rad. cor.
- ▶ To get the right kinematics for its decays, better take  $m_H^{\text{corr}} = \sqrt{s}$  on the external leg for comparison with exp.
- Couplings of H to scalars/Goldstones also  $\propto m_H \rightarrow$  one should ensure that  $m_{H}^{\rm kin} \equiv m_{H}^{\rm coup}$  to maintain gauge invariance
- Define an effective rad. Higgs potential

$$\begin{split} \mathcal{V}_{\rm rad.}^{S} &= m_{H_{u}}^{2} |H_{u}|^{2} + m_{H_{d}}^{2} |H_{d}|^{2} + \frac{\lambda_{1}}{2} |H_{d}|^{4} + \frac{\lambda_{2}}{2} |H_{u}|^{4} + \lambda_{3} |H_{u}|^{2} |H_{d}|^{2} + \lambda_{4} |H_{u} \cdot H_{d}|^{2} \\ &+ m_{5}^{2} |S|^{2} + \kappa^{2} |S|^{4} + \left[\frac{A_{5}}{3} S^{3} + h.c.\right] \\ &+ \lambda_{P}^{u} |S|^{2} |H_{u}|^{2} + \lambda_{P}^{d} |S|^{2} |H_{d}|^{2} + \left[A_{ud} S H_{u} \cdot H_{d} + \lambda_{P}^{M} S^{*2} H_{u} \cdot H_{d} + h.c.\right] \end{split}$$

The tree-level conditions resulting from the NMSSM read:

$$\begin{split} \lambda_1^0 &= \frac{g^2 + g'^2}{4} = \lambda_2^0 \quad ; \ \lambda_3^0 &= \frac{g^2 - g'^2}{4} \quad ; \ \lambda_4^0 &= \lambda^2 - \frac{g^2}{2} \quad ; \ \lambda_P^{u0} &= \lambda^2 = \lambda_P^{d0} \; ; \\ \lambda_P^{M0} &= \lambda \kappa \qquad ; \ A_S^0 &= \kappa A_\kappa \qquad ; \ A_{ud}^0 &= \lambda A_\lambda \qquad ; \ \kappa^{02} &= \kappa^2 \end{split}$$

Reproduction of the corr. Higgs masses by a redefinition beyond LO such that  $\lambda_i = \lambda_i^0 + \Delta \lambda_i$ 

$$\begin{cases} \Delta \lambda_{1} = \frac{1}{2v^{2}} \begin{bmatrix} \frac{m_{\mu}^{2}}{\log} S_{i1}^{2}}{\cos^{2} \beta} - \frac{m_{s0}^{2}}{\rho} P_{i1}^{\prime 2} \tan^{2} \beta - M_{Z}^{2} \end{bmatrix} \\ \Delta \lambda_{2} = \frac{1}{2v^{2}} \begin{bmatrix} \frac{m_{\mu}^{2}}{\log} S_{i2}^{\prime 2}}{\frac{1}{\sin^{2} \beta}} - \frac{m_{s0}^{2}}{\tan^{2} \beta} - M_{Z}^{2} \end{bmatrix} \\ \Delta \lambda_{3} = \frac{1}{2v^{2}} \begin{bmatrix} 2m_{H^{\pm}}^{2} + \frac{2m_{\mu}^{2}}{\sin^{2} \beta} - m_{s1}^{2} - M_{Z}^{2} \end{bmatrix} \\ \Delta \lambda_{4} = \frac{1}{2v^{2}} \begin{bmatrix} m_{s0}^{2} P_{i1}^{\prime 2} - m_{H^{\pm}}^{2} + M_{W}^{2} - \lambda^{2}v^{2} \end{bmatrix} \\ \Delta \lambda_{4} = \frac{1}{v^{2}} \begin{bmatrix} m_{s0}^{2} P_{i1}^{\prime 2} - m_{H^{\pm}}^{2} + M_{W}^{2} - \lambda^{2}v^{2} \end{bmatrix} \\ \Delta A_{4} = \frac{1}{3s} \begin{bmatrix} \frac{\sin 2\beta}{2s} m_{s0}^{2} P_{i1}^{\prime 2} - \frac{1}{v} m_{s0}^{2} P_{i1}^{\prime 2} P_{i2}^{\prime 2} \end{bmatrix} - \lambda A_{\lambda} \\ \Delta \lambda_{P}^{M} = \frac{1}{3s} \begin{bmatrix} \frac{\sin 2\beta}{2s} m_{s0}^{2} P_{i1}^{\prime 2} - \frac{1}{v} m_{s0}^{2} P_{i1}^{\prime 2} P_{i2}^{\prime 2} \end{bmatrix} - \lambda \kappa \\ \Delta A_{5} = \frac{1}{3s} \begin{bmatrix} \frac{v^{2} \sin^{2} 2\beta}{2s^{2}} m_{s0}^{2} P_{i1}^{\prime 2} - m_{s0}^{2} P_{i2}^{\prime 2} - \frac{v \sin 2\beta}{2s} m_{s0}^{2} P_{i1}^{\prime 2} P_{i2}^{\prime 2} \end{bmatrix} - \kappa A_{\kappa} \\ \Delta \kappa^{2} = \frac{1}{4s^{2}} \begin{bmatrix} m_{\mu0}^{2} S_{i3}^{2} + \frac{1}{3} m_{s0}^{2} P_{i2}^{\prime 2} - \frac{v^{2} \sin^{2} 2\beta}{3s^{2}} m_{s0}^{2} P_{i1}^{\prime 2} \end{bmatrix} - \kappa^{2} \\ \Delta \lambda_{P}^{\mu} = \frac{m_{\mu0}^{2} S_{i2} S_{i3}}{\frac{1}{2s V \cos \beta}} + \frac{1}{3s \tan \beta} \begin{bmatrix} \frac{\sin 2\beta}{s} m_{s0}^{2} P_{i1}^{\prime 2} - \frac{1}{2v} m_{s0}^{2} P_{i1}^{\prime 2} P_{i2}^{\prime 2} \end{bmatrix} - \lambda^{2} \\ \Delta \lambda_{P}^{\mu} = \frac{m_{\mu0}^{2} S_{i1} S_{i3}}{\frac{1}{2s V \cos \beta}} + \frac{\tan \beta}{3s} \begin{bmatrix} \frac{\sin 2\beta}{s} m_{s0}^{2} P_{i1}^{\prime 2} - \frac{1}{2v} m_{s0}^{2} P_{i1}^{\prime 2} P_{i2}^{\prime 2} \end{bmatrix} - \lambda^{2} \\ \Delta \lambda_{P}^{\mu} = \frac{m_{\mu0}^{2} S_{i1} S_{i3}}{\frac{1}{2s V \cos \beta}} + \frac{\tan \beta}{3s} \begin{bmatrix} \frac{\sin 2\beta}{s} m_{s0}^{2} P_{i1}^{\prime 2} - \frac{1}{2v} m_{s0}^{2} P_{i1}^{\prime 2} P_{i2}^{\prime 2} \end{bmatrix} - \lambda^{2} \\ \lambda_{P}^{\mu} = \frac{m_{\mu0}^{2} S_{i1} S_{i3}}{\frac{1}{2s V \cos \beta}} + \frac{\tan \beta}{3s} \begin{bmatrix} \frac{\sin 2\beta}{s} m_{s0}^{2} P_{i1}^{\prime 2} - \frac{1}{2v} m_{s0}^{2} P_{i1}^{\prime 2} P_{i2}^{\prime 2} \end{bmatrix} - \lambda^{2} \\ \lambda_{P}^{\mu} = \frac{m_{\mu0}^{2} S_{i1} S_{i3}}{\frac{1}{2s V \cos \beta}} + \frac{\tan \beta}{3s} \begin{bmatrix} \frac{\sin 2\beta}{s} m_{s0}^{2} P_{i1}^{\prime 2} - \frac{1}{2v} m_{s0}^{2} P_{i1}^{\prime 2} \end{bmatrix} \end{bmatrix}$$

 $\blacktriangleright$  This form of  $\mathcal{V}_{\rm rad.}^{S}$  is accurate at LL level. Implemented in SLOOPS

CHALONS Guillaume

AUTOMATIC LOOP CALCULATIONS OF NMSSM PROCESSES WITH SLOOPS

17/14