Monte Carlo for New Physics at NLO and Beyond

Terascale@Paris

Richard Ruiz

Institute for Particle Physics Phenomenology, University of Durham

24 November 2016

R. Ruiz - IPPP

in Wisibles neutrinos, dark matter & dark energy physics

Terascale@Paris

1 / 29

This talk is *not*...

- Exhaustive. Unfortunately, lots of omissions.
- A technical lecture on next-to-next-to-...-leading order computations

< ∃ > <

э

This talk is *not*...

- Exhaustive. Unfortunately, lots of omissions.
- A technical lecture on next-to-next-to-...-leading order computations

This talk is...

- A summary of Monte Carlo (MC) advances from the past several years for studying new physics at colliders
- A qualitative discussion on why perturbative QCD corrections are in fact important for new physics searches at colliders

This talk is *not*...

- Exhaustive. Unfortunately, lots of omissions.
- A technical lecture on next-to-next-to-...-leading order computations

This talk is...

- A summary of Monte Carlo (MC) advances from the past several years for studying new physics at colliders
- A qualitative discussion on why perturbative QCD corrections are in fact important for new physics searches at colliders
- Propaganda highlighting Europe's role in HEP
- Encouragement to hep-ex to continue telling the MC folks your needs

・ 何 ト ・ ヨ ト ・ ヨ ト

What Data Tells Us

The LHC is operating spectacularly!

- Higgs 🥝: No longer a hep-th problem. Now also a hep-ex problem.
- mass hierarchy, little hierarchy, particle nature of dark matter, origin of EWSB, etc., are issues that require more data and thought

・ 「「・ ・ 」 ・ ・ 」 ・

What Data Tells Us

The LHC is operating spectacularly!

- Higgs 🥙: No longer a hep-th problem. Now also a hep-ex problem.
- mass hierarchy, little hierarchy, particle nature of dark matter, origin of EWSB, etc., are issues that require more data and thought

After Run I [5 fb⁻¹ 7 + 20 fb⁻¹ at 8 TeV], data tells us

Interaction Strength \setminus Mass Scale	$\Lambda_{\rm BSM} \lesssim \langle \Phi_{\rm EW} \rangle$	$\Lambda_{\rm BSM} \gg \langle \Phi_{\rm EW} \rangle$
$g_{ m BSM}\gtrsim g_{ m SM}$	×	Need more data!
$g_{ m BSM} \ll g_{ m SM}$	Need more data!	Cannot probe :(

What Data Tells Us

The LHC is operating spectacularly!

- Higgs 🥙: No longer a hep-th problem. Now also a hep-ex problem.
- mass hierarchy, little hierarchy, particle nature of dark matter, origin of EWSB, etc., are issues that require more data and thought

After Run I [5 fb⁻¹ 7 + 20 fb⁻¹ at 8 TeV], data tells us

Interaction Strength \setminus Mass Scale	$\Lambda_{\rm BSM} \lesssim \langle \Phi_{\rm EW} \rangle$	$\Lambda_{\rm BSM} \gg \langle \Phi_{\rm EW} \rangle$
$g_{ m BSM}\gtrsim g_{ m SM}$	×	Need more data!
$g_{ m BSM} \ll g_{ m SM}$	Need more data!	Cannot probe :(

Picture first suggested by LEP + Belle I + Tevatron is telling!

- For $\Lambda_{\rm BSM} \lesssim \langle \Phi_{\rm EW} \rangle$ and $g_{\rm BSM} \ll g_{\rm SM}$, $\mathcal{O}(\alpha_s)$ corrections known to be large due to huge PDF enhancement at low-x
- Corrections for $\Lambda_{\rm BSM} \gg \langle \Phi_{\rm EW} \rangle$ is more subtle

к	ĸп	17	- 1	P	РΡ

Situation: It appears we may be entering a regime at LHC13 where

 $\Lambda_{BSM} \gg \langle \Phi_{EW} \rangle \gg \Lambda_{QCD}$

At LEP, Tevatron, and LHC7/8, we were largely exploring a regime where

 $\langle \Phi_{EW} \rangle \gtrsim \Lambda_{BSM} > \Lambda_{QCD}$

Problem: Terms from radiative processes, e.g., VBF & +nj, that scale as

 $\sigma(pp \to X) \sim \log \Lambda_{BSM} / \langle \Phi_{EW} \rangle$ and $\sim \log \Lambda_{BSM} / \Lambda_{QCD}$

are spoiling the validity of BSM predictions and collider signatures.

Situation: It appears we may be entering a regime at LHC13 where

 $\Lambda_{BSM} \gg \langle \Phi_{EW} \rangle \gg \Lambda_{QCD}$

At LEP, Tevatron, and LHC7/8, we were largely exploring a regime where

 $\langle \Phi_{EW} \rangle \gtrsim \Lambda_{BSM} > \Lambda_{QCD}$

Problem: Terms from radiative processes, e.g., VBF & +nj, that scale as

$$\sigma(pp \to X) \sim \log \Lambda_{BSM} / \langle \Phi_{EW} \rangle$$
 and $\sim \log \Lambda_{BSM} / \Lambda_{QCD}$

are spoiling the validity of BSM predictions and collider signatures.

Solution: These are issues long-understood by the pQCD community: exploit soft/collinear factorization, resummation, and IRC-safety. From this perspective, physics at colliders looks **qualitatively different**.

< □ ▶ < @ ▶ < E ▶ < E ▶ E ∽ Q (~ aris 4 / 29

The Importance of Monte Carlo and pQCD

• Higgs boson mass, electric charge of top quark, and triple gauge couplings are fundamental quantities in the Standard Model

5 / 29

イロト イ理ト イヨト イヨト

The Importance of Monte Carlo and pQCD

- Higgs boson mass, electric charge of top quark, and triple gauge couplings are fundamental quantities in the Standard Model
- Required MC and both Fixed Order (FO) / Resummed corrections
- Maturity of physics *and* technology easily allows application to BSM

Anatomy of MC@NLO

<u> </u>	<u>.</u> .		-
	L		_
IN.	$\mathbf{N}\mathbf{H}\mathbf{Z} =$		

Ξ.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The Monte Carlo Analysis Chain for Collider Experiments

Lots of tools on the market [hepforge.org/projects].

R. Ruiz - IPPP	Terascale@Paris	7 / 29	

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Basis of Scalar Loop Integrals (QCDLoop)

In 2007, Ellis and Zanderighi constructed an analytic basis of scalar integrals from which *any* 1-,2-,3-, or 4-point loop diagram could be built. [0712.1851]

It was known before that (N > 4)-point loops could be reduced to combinations of (N - 1)-point integrals.

(日) (周) (王) (王)

QCDLoop returns coefficients of $1/\epsilon^2, \ 1/\epsilon^1, \ 1/\epsilon^0$ [qcdloop.fnal.gov]

No such known basis (yet?) for two-loop diagrams.

R. Ruiz - IPPP	Terascale@Paris	8 / 29	

Fast Scalar Loop Integrand Reduction

In 2006-7, OPP showed that the *integrand* of *any* 1-,2-,3-, or 4-point scalar loop integral could be evaluated numerically and efficiently.

For an *m*-point function with
propagators
$$\overline{D}_i$$
, one can write

$$I = \int d^d \overline{q} A(q),$$

$$A(q) = \frac{N(q)}{\overline{D}_0 \overline{D}_1 \cdots \overline{D}_{m-1}},$$
where $N(q)$ is \rightarrow
CutTools, Collier, Ninja...

There remains a process-dependent, model-dependent but finite contribution (**rational term**) that can be derived from Feynman rules

9 / 29

(D) (A P) (B) (B)

Process-Dependent Terms (NLOCT)

While the *R* terms for the SM (EW+QCD) were made available in [0903.0356; 0910.3130], automation for a generic model took more time.

Solution: NLOCT libraries for FeynRules [Degrande, 1406.3030]

 $\mathcal{L}_{\mathrm{Renormalizable}} \rightarrow \mathsf{FeynRules} \rightarrow \underbrace{\mathsf{FeynArts}}_{\mathrm{construct\ loops}} \overset{\mathrm{collect}}{\longrightarrow} \overset{R_2}{\longrightarrow} \mathsf{FeynRules} \rightarrow \mathsf{UFO}$

Strong European effort! [feynrules.irmp.ucl.ac.be/wiki/NLOModels]

Description	Contact	Reference	FeynRules model files	UFO libraries	Validation material
Dark matter simplified models (more details)	K. Mawatari	⇔arXiv:1508.00564 , ⇔arXiv: 1508.05327 , ⇔ arXiv: 1509.05785	-	DMsimp_UF0.2.zip	
Gluino pair production (SUSY-QCD)	B. Fuks	⇔arXiv:1510.00391	-	susyqcd_ufo.tgz	All figures available from the arxiv
GM (more details)	A. Peterson	G+arXiv:1512.01243	-	GM_NLO UFO	
Heavy Neutrino (more details)	R. Ruiz	G+arXiv:1602.06957	heavyN.fr	HeavyN NLO UFO	-
Higgs characterisation (more details)	K. Mawatari	⇔arXiv:1311.1829, ⇔arXiv:1407.5089, ↔ arXiv: 1504.00611	-	HC_NLO_X0_UF0.zip	
Inclusive sgluon pair production	B. Fuks	@karXiv:1412.5589	sgluons.fr	sgluons_ufo.tgz	sgluons_validation.pdf; sgluons_validation_root.tgz
Spin-2 (more details)	C. Degrande	⇔http://arxiv.org/abs/1605.09359	dm_s_spin2.fr	SMspin2 NLO UFO	
Stop pair -> t tbar + missing energy	B. Fuks	@karXiv:1412.5589	stop_ttmet.fr	stop_ttmet_ufo.tgz	stop_ttmet_validation.pdf ; stop_ttmet_validation_root.tgz
Two-Higgs-Doublet Model (more details)	C. Degrande	⇔arXiv:1406.3030	-	2HDM_NLO	
Top FCNC Model (more details)	C. Zhang	G+arXiv:1412.5594	TopEFTFCNC.fr	TopFCNC UFO	-
Vector like quarks	B. Fuks	G+arXiv:1610.04622	VLQ_v3.fr	UFO in the SFNS, UFO in the 4FNS, event generation scripts	All figures available from the arxiv
Effective LR symmetric model (more details)	R. Riuz	G+arXiv:1610.08985	effLRSM.fr	EffLRSM UFO	•
R. Ruiz	- IPPI	P	T	erascale@Paris	10 / 29

MC@NLO

Impetus for this loop-revolution came from another breakthrough: removing phase space **double counting** between matrix element and parton showers

• A parton showers capture soft/collinear emissions from initial and final state. Unsuppressed since $\sigma \sim \alpha_s(k_T^2) \log(Q^2/k_T^2)$

Solution: MC@NLO [Frixione, Webber, hep-ph/0204244]. Essentially,

- If collinear/soft, it came from the PS. If wide-angle/hard, then ME
- PS and ME describe these regions well, respectively.

R. Ruiz - IPPP	Terascale@Paris	11 / 29	

With a little work, patience, and time, automated inclusive NLO and fully differential NLO+PS results for BSM are possible

• For low-mass W', Z', we see $\sigma^{\text{NLO}}/\sigma^{\text{LO}} \gg 1.2 - 1.3$, contrary to lore. Important for dark photon/ Z'_D searches. [1607.03504]

• For $\tilde{t}\bar{\tilde{t}} \rightarrow t\bar{t}$ +MET, shape changes are large [1412.5589]

12 / 29

Georgi-Machacek (Higgs Triplet) [1512.01243]

- GM model predicts new, exotic higgs H^0 , H^{\pm} , $H^{\pm\pm}$ that couple to EW bosons
- For total rate, QCD corrections to VBF known to be small [Han, et al]
- Not true differentially or with cuts: Higgs kinematics shift $\pm 20\%$

 W^{\pm}

13 / 29

 H^{\pm}

Heavy Neutrinos [1602.06957]

During '12-'15, series of papers on heavy *N* at colliders had conflicting predictions and conclusions

Heavy Neutrinos [1602.06957]

During '12-'15, series of papers on heavy *N* at colliders had conflicting predictions and conclusions

Problem: several studies used ill-defined collider signatures.

Solution:

Invert perturbativity requirements for validity of FO calculations
photon PDF matching for VBF
Missing Z* channel in GF
Broadly applicable to colorless BSM since does not rely on nature of N

Top-philic Dark Matter [1605.09242]

The LHC is the only operational collider that can produce top quarks

• Natural testing ground for top-philic dark matter

Impact of scale uncertainty often ignored on setting limits on BSM rates

			\sim		
	(m_Y, m_X)	$\sigma_{\rm LO} \ [{\rm pb}]$	CL _{LO} [%]	$\sigma_{\rm NLO} \ [{\rm pb}]$	CL_{NLO} [%]
Ι	(150, 25) GeV	$0.658^{+34.9\%}_{-24.0\%}$	$98.7^{+0.8\%}_{-13.0\%}$	$0.773^{+6.1\%}_{-10.1\%}$	$95.0^{+2.7\%}_{-0.4\%}$
II	$(40,30)~{\rm GeV}$	$0.776^{+34.2\%}_{-24.1\%}$	$74.7^{+19.7\%}_{-17.7\%}$	$0.926^{+5.7\%}_{-10.4\%}$	$84.2^{+0.4\%}_{-14.4\%}$
III	$(240, 100) {\rm GeV}$	$0.187^{+37.1\%}_{-24.4\%}$	$91.6^{+6.4\%}_{-18.1\%}$	$0.216^{+6.7\%}_{-11.4\%}$	$86.5^{+8.6\%}_{-5.5\%}$
				(日) (四) (回)	► 4 분 ► 분 · 의 Q (0)
	R. Ruiz - IPPP		Terascale@Pa	ris	15 / 29

Outlook

_		
	nuz =	

Terascale@Paris

Automated Monte Carlo at NNLO (1 slide)

Ξ.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

MC@NNLO for BSM

Is MC@NNLO important for BSM?

No. Except when MC@NNLO really means MC@NLO

For loop-induced processes, MC@NLO \implies 1-loop @ LO

- $gg \rightarrow S^0, \ A^0$: QCD corrections are *large*
- Heavy lepton production at 100 TeV: GF@LO > DY@NLO

Automated Resummation¹

¹Non-experts: Roughly speaking, resummation is a procedure for collecting most (or next-to-most or next-to-next-...) divergent radiation terms at each order of perturbation theory to obtain a finite result. Useful since FO results breakdown near poles.

R. Ruiz - IPPP

Terascale@Paris

19 / 29

Threshold and Recoil Resummation

	•			-				-	-	
$1 \cdot 1 \cdot 1 \cdot 1 = 1 = 1 = 1$	2	ᅫ	ł	Р	L	IZ	u	к	к	

∃ 990

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Inclusive W' production is identical to $W_{\rm SM}$, except $M_{W'} \gtrsim 3-4$ TeV.

Away from phase space boundaries, QCD corrections for DY-systems are 20-40%. However, radiations generate logs

$$\begin{split} \sigma(pp \to W' + g) &\sim \int d^{4-2\varepsilon} PS_2 \sim \lambda^{\frac{1-2\varepsilon}{2}} \left(1, \frac{Q^2 = M_{W'}^2}{\hat{s}}, \frac{k_g^2 = 0}{\hat{s}} \right) \\ &= \left(1 - \frac{M_{W'}^2}{\hat{s}} \right)^{1-2\varepsilon} \sim 2\varepsilon \log \left(1 - \frac{M_{W'}^2}{\hat{s}} \right), \end{split}$$

As $M^2_{W'} \to s$, logs explode since $M^2_{W'} \to \hat{s} < s$ forces *threshold* radiation g to be soft.

In this limit, soft factorization is justified and logs can be resummed!

Numerical Impact of Threshold Resummation

Threshold resummation is important when

 $({\it M}_{
m BSM}/\sqrt{s})\gtrsim 0.3$ for $q\overline{q}$ or $({\it M}_{
m BSM}/\sqrt{s})\ll 1$ for gg

- Electroweak superpartners (Resummino) [www.resummino.org]
- Drell-Yan (ReDY) [www.ge.infn.it/ ~ bonvini/redy/]
- GF to (pseudo)scalar (TROLL) [www.ge.infn.it/ ~ bonvini/troll/]

CSS (or recoil or p_T)-Resummation

"Threshold gluons" have sizable impact on kinematics

3-4 TeV W' can be "kicked" such that $p_T^{W'}\sim$ 100 GeV. At LO, $p_T^{W'}=0$

 $p_T^{W'}$ shifts impact decay particle kinematics, e.g., in $pp \rightarrow W' \rightarrow tb$

Changes in detection efficiency investigated with ResBos II

R. Ruiz - IPPP	Terascale@Paris	23 / 29	

Jet Veto Resummation

<u> </u>	<u> </u>		
		_	_
	nuz = 1	- 1	

E 990

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

When a Jet Veto is Applied to $pp ightarrow W^+W^- + X$

- Unstable logarithms of the form $\alpha_s(p_T^{\text{Veto}}) \log(p_T^{\text{Veto}}/M_{WW})$ appear. Resummable since still inclusive w.r.t. ultra-soft and -collinear rad.
- Cancellations when summing over *all* radiations do not occur... [1507.01652] This is more serious.

Soln: Non-trivially, observe that residual terms have the form [1205.3806; 1412.8408]:

$$\left(\frac{M_{WW}}{p_T^{\rm Veto}}\right)^k \text{ and } \frac{\Lambda_{\rm QCD}}{p_T^{\rm Veto}} \log\left(\frac{M_{WW}}{p_T^{\rm Veto}}\right).$$

If $p_T^{\rm Veto}$ is in the "Goldilocks" region, such terms are numerically small: $\Lambda_{\rm QCD} \sim \mathcal{O}(1) \text{ GeV} \ll p_T^{\rm Veto} \sim 20 - 40 \text{ GeV} \ll M_{WW}$

						-
к	ĸп	117	- 1	P	Р	F

25 / 29

Jet veto physics very deep, but also very rigorous and experimentally tested.

Computational framework quietly released in MG5aMC@NLO [1412.8408].

- Requires BSM@NLO model file, but these are available from FeynRules
- Broadly improves color-singlet BSM searches [Fuks, RR, (soon)]

Over the past several years, a very strong push to modernize BSM analyses

- Less about "+20% rate improvements", more about consistent modeling of color flow in hadronic collisions
- Data suggests we model spaces where QCD corrections are large
 - Okay since SM N3LO and N3LL also suggest perturbative stability
- Changes to kinematics at NLO and beyond have substantial impact on phenomenology
- Not possible without collective European efforts

Last words:

・ 何 ト ・ ヨ ト ・ ヨ ト

Until 2015, LHC operations were a fraction of designed potential

- \bullet 7/8 TeV luminosity (flux) of colliding partons \ll 13/14 TeV lumi
- $\bullet\,$ Pheno studies from '90s-'00s assumed 14 TeV and 100-300 fb $^{-1}\,$

Remember: "The LHC is planned to run over the next 20 years, with several stops scheduled for upgrades and maintenance work." [press.cern]

- High-Luminosity LHC and Belle II goals: 1-3 ab^{-1} and 50 ab^{-1}
- Premature to claim "nightmare scenario" (SM Higgs + nothing else)

29 / 29

3

◆□> ◆圖> ◆ヨ> ◆ヨ>