

Higgs HL-LHC perspectives from ATLAS and CMS

Lucia Di Ciaccio Université de Savoie MB & CNRS/IN2P3

GDR Terascale - 23-25 November 2016, Paris

Outline

- HL-LHC: Accelerator & Detector Upgrade
- Analysis methods & assumptions
- Higgs signal strenght & couplings
- A rare decay: $H \rightarrow J/\psi \gamma$
- Higgs self-coupling
- **BSM Higgs**
- Conclusion and Outlook

More results in ECFA WKS October 2016, Aix-les-Bains (https://indico.cern.ch/event/524795/overview)

L. Di Ciaccio - GDR Terascale, Paris 23-25 November 2016

HL-LHC: Accelerator & Detector Upgrade

- HL-LHC design:
 - Total integrated luminosity: 3000 fb⁻¹ in ~ 10 years
- ~ Ten times the luminosity reach of first 10 years of LHC operation
 - Mean number of collisions per bunch crossing <<u>PU> = 140 (200)</u>
- A big challenge for the experiments => Upgrade of Detectors
 - Very high pile up $\langle PU \rangle = 140 (200) \rightarrow$ upgrade for PU mitigation
 - Intense radiation doses

- \rightarrow upgrade to improve radiation hardness

Goal is to maintain or improve over current performance

Prospects: Analysis methods & assumptions

- HL-LHC Higgs prospects done in two ways:
 - Parameterized performance of the upgraded detectors
 - Event-generator level particles smeared with detector performance parameterized from full simulation, PU effects included.

Extrapolation of Run 1 or Run 2 results

- Scale signal and background to higher luminosities and energy (14 TeV)
- Unchanged analysis and ~ same detector performance as in Run 1, 2

Assumptions on the systematic uncertainties:

- ATLAS approach:
 - Experimental systematics scaled to best guess for HL-LHC
 - Results provided with & without (current) theory systematics
- CMS approach, 2 main scenarios:
 - S1⁽⁺⁾: current experimental and theory systematics (+ PU & upgrade)
 - S2⁽⁺⁾: experimental scaled with luminosity (1/√L) until a certain best achievable uncertainty level. The current theory systematics is halved. (+ PU & upgrade)

Relative uncertainty on the signal strenght : $\mu = \sigma_{obs} / \sigma_{SM}$

Higgs couplings: deviations w.r.t the SM

Higgs couplings to charm quark: $H \rightarrow J/\psi \gamma$

Baseline result with simple multivariate analysis (several improvements possible)

95% CL upper limits on Br(H \rightarrow J/ $\psi\gamma$) ~ 15 times the SM value

(no bkg systematic considered)

Very challenging:

- Low production cross section : σ (pp \rightarrow HH)SM _{NNLO+NNLL} = 33.45 fb (@ 13TeV)
 - \rightarrow Use Higgs decay channels with high branching ratios (al least for one of the two H) : HH \rightarrow bb XX where X = b, W, τ , γ
- Huge background
- Example: $HH \rightarrow b\overline{b} \ b\overline{b}$ (ATLAS) ATL-PHYS-PUB-**Projection from extrapolation of Run 2 results (resolved analysis)** 2016-024 Entries/10 GeV ₉01 GeV ATLAS Preliminary Multijet • Trigger thresholds: $p_T(jet) > 30 \text{ GeV}$ $\sqrt{s} = 14 \text{ TeV}, L = 3000 \text{ fb}^{-1}$ and $p_T(jet) > 75 \text{ GeV}$ SM non-resonant HH • Same: jet reconstruction, b-quark jet 10³ identification performance, 10² selection & statistical analysis technique 10 • Main background (95%) multijet 10⁻¹200 is extrapolated from Run 2

600

400

800

M_{4i}[GeV]

1000

1200 m₄i [GeV]

HH→ bbbb (ATLAS) & HH→ bb WW (CMS)

■ HH→ bbbb

- Main impact of the uncertainties on the 95% C.L. exclusion limit (σ/σ_{SM}) is from **the background modelling**
- m_{4j} as function of λ/λ_{SM} generated with morphing technique used to set 95% C.L. upper limit on the cross-sections

 $-7.4 < \lambda/\lambda_{\rm SM} < 14$

■HH→ $b\bar{b}W(\ell_V)W(jj)$

- Only background considered: $t\bar{t}$
- Signal optimisation via BDT
- Data driven techniques will constraint uncertainties to the per cent level

 $\sigma/\sigma_{\rm SM} \sim 3-5$

L. Di Ciaccio - GDR Terascale, Paris 23-25 November 2016

Summary of HH Projections

expected uncertainty

- Measuring HH production is challenging
- Need to use as many production mechanisms and final states as possible

BSM Higgs: heavy Higgs $\phi \rightarrow \tau^+ \tau^-$

Conclusion & Outlook

- High-Luminosity LHC very challenging environment
- Expect that upgraded detector ~ same current performance at highest pile-up levels than now and even better in some areas

HL-LHC brings us:

- differential distributions & couplings measurements to W/Z/3rd gen.
 with precision and across broad kinematics, which could reveal signs of:
 - new particles in loops (too heavy to be produced, or hard to observe)
 - non-fundamental nature of Higgs
 - or simply confirm, in detail, a highly non-trivial part of the SM
- proof of expected coupling to 2nd generation (ex: $H \rightarrow \mu\mu$, $H \rightarrow J/\psi \gamma$)
- much higher sensitivity for rare decays involving new physics
- first exploration of Higgs potential (HH)

Prospect studies very likely conservatives since analyses often not optimised Room for improvements

The direct BSM search program, will approach its asymptotic limits before the 3 ab^{-1} are collected, while the study of Higgs properties (together with high Q² gauge boson behavior) may well dominate the endgame

Backup

- LHC Run 2 very successful: integrated luminosity delivered/per exp ~ 40 fb⁻¹,
- HL-LHC goal:

Peak luminosity ~ 1.4 x 10^{34} cm⁻¹s⁻¹)

• Total integrated luminosity of **3000 fb⁻¹ in ~ 10 years**

* implies integrated luminosity of 250-300 fb⁻¹ per year

- * requires peak luminosity 5 (7) x 10³⁴ cm⁻¹s⁻¹. With levelling
- * mean number of collision per bunch crossing <**PU**> = 140 (200)
- Ultimate performance: peak luminosity 7.5 x 10³⁴ cm⁻¹s⁻¹ and 4000 fb⁻¹

Ten times the luminosity reach of first ~ 10 years of LHC operation

Upgrade of ATLAS & CMS

HL-LHC provides an extreme challenge to the experiments

- Very high pile up $\langle PU \rangle = 140 (200) \rightarrow$ upgrade for PU mitigation
- Intense radiation doses \rightarrow upgrade to improve radiation hardness
- New triggering and data-acquisition capabilities to cope with higher data rates
- tracking information at the hardware level of the trigger
- replacement front- and back-end electronics for calorimeters and/or muon systems 14 TeV. PU = 50/140
- New tracking systems with new silicon-sensor itechnology :
 increase granularity & tracker coverage
 lighter mechanical structures and material Improved b-tagging capabilities
 ATLAS: high_granularity timing detector

- ATLAS: high-granularity timing detector (~ps) in front of the endcap LAr calorimeters
- CMS: new high-granularity endcap calorimeter
- Muons : add new chambers (or replace) and read-out electronics

Goal is to maintain or improve over current performance

L. Di Ciaccio - GDR Terascale, Paris 23-25 November 2016

Higgs Production Channels

Higgs width $\Gamma_{\rm H}$ from m_{41} (off/on-shell)

Differential p_T(H) Cross Section

$$O = |\langle f | L | i \rangle|^2 = O_{SM} \left[1 + O(\mu^2 / \Lambda^2) + \cdots \right]$$

For H decays, or inclusive production, $\mu \sim O(v, m_H)$

$$\delta O \sim \left(\frac{v}{\Lambda}\right)^2 \sim 6\% \left(\frac{\text{TeV}}{\Lambda}\right)^2 \implies \text{precision probes large } \Lambda$$

e.g. $\delta O = 1\% \Rightarrow \Lambda \sim 2.5 \text{ TeV}$

For H production off-shell or with large momentum transfer Q, $\mu \sim O(Q)$

 $\delta O_Q \sim \left(\frac{Q}{\Lambda}\right)^2$ \Rightarrow kinematic reach probes large Λ even if precision is low

e.g. $\delta O_Q = 15\%$ at Q=1 TeV $\Rightarrow \Lambda \sim 2.5$ TeV

Study of the Higgs potential : HH production

- Very challenging:
- Low production cross section : $\sigma (pp \rightarrow HH)^{SM}_{NNLO+NNLL} = 33.45 \text{ fb}$ (@ 13TeV)
 - → Use Higgs decay channels with high branching ratios (al least for one of the two H) : HH→ bb XX where X = b, W, τ, γ
- Huge background

Table 1: Branching ratios for different *HH* final states, and their corresponding overall expected yields in 3000 fb⁻¹ of data, assuming a total production cross section of 40.8 fb [7,8] and a Higgs mass of 125 GeV.

Decay Channel	Branching Ratio	Total Yield (3000 fb^{-1})
$b\overline{b} + b\overline{b}$	33%	4.1×10^{4}
$b\overline{b} + W^+W^-$	25%	3.1×10^{4}
$b\overline{b} + au^+ au^-$	7.4%	9.0×10^{3}
$W^+W^- + \tau^+\tau^-$	5.4%	6.6×10^3
$ZZ + b\overline{b}$	3.1%	3.8×10^3
$ZZ + W^+W^-$	1.2%	1.4×10^{3}
$\gamma\gamma + b\overline{b}$	0.3%	3.3×10^{2}
$\gamma\gamma + \gamma\gamma$	0.0010%	1

Study of the Higgs potential : HH

HH→ bbbb

- Main impact of the uncertainties on the 95% C.L. exclusion is from the background modelling
- m_{4j} as function of λ/λ_{SM} generated with morphing technique used to set 95% C.L. upper limit on the cross-sections

L. Di Ciaccio - GDR Terascale, Paris 23-25 November 2016

Maxim Perelstein, Cornell Higgs Couplings Workshop, SLAC-Nov 2016

- Measuring Higgs cubic coupling gives new information about the shape of the Higgs potential
- Large (up to ~factor-of-two) deviations from the SM are possible, consistent with current Higgs data
- Models with first-order electroweak phase transition (needed for viable electroweak baryogenesis) generically predict large deviations of Higgs cubic from the SM
- A ~10%-level measurement of the Higgs cubic would provide a stringer test of such models

ttHH

- For ≥5 b-tags: 25 signal events, 7100 background
- background dominated by c-jets mis-tagged as b-jets from $W \rightarrow cs$
- significance of ttHH production (no syst. error): 0.35 σ

L. Di Ciaccio - GDR Terascale, Paris 23-25 November 2016

Sensitivity to resonant bbbb (spin 0)

- Projection based on the 13 TeV analysis (2.3 fb⁻¹, CMS-PAS-HIG-16-002)
- $m_X = mass$ of the spin 0 resonance
- $\Lambda_{\rm R}$ = value of the mass scale excluded at 95% CL

CMS DP -2016/064

$m_{\rm X}({ m TeV})$	Median expected			$\sigma_{\rm R}(\Lambda_{\rm R}=1{\rm TeV})$	$\Lambda_{\rm R}$ (TeV)
	limits on σ (fb)			(fb)	excluded
	$2.3\mathrm{fb}^{-1}$	ECFA16 S2+	Stat. Only		
0.3	2990	46	41	7130	13
0.7	129.4	7.3	3.4	584	8.9
1.0	81.5	4.4	2.4	190	6.6

VBF H invisible

BSM Higgs constraints

L. Di Ciaccio - GDR Terascale, Paris 23-25 November 2016

Higgs couplings: deviations w.r.t the SM $(y_f^{SM} \sim m_f / v = y_V^{SM} \sim M_{w,z}^2 / v)$

ATL-PHYS- PUB-2014-016

CMS DP -2016/064

$$y_{V,i} = \sqrt{\kappa_{V,i} \frac{g_{V,i}}{2v}}$$

$$y_{F,i} = \kappa_{F,i} \frac{g_{F,i}}{\sqrt{2}}$$