

Higgs Couplings Measurements in ATLAS and CMS for Run 2 and Beyond

(SMEFT, STXS, POs and all that)

Nicolas Berger (LAPP Annecy)

Reporting results from the ATLAS and CMS collaborations

GDR TeraScale Paris, 25/11/2016

Introduction

- Rich experimental program for studies of the Higgs boson at m_H=125 GeV
 - Many production and decay modes
 - Many observables: event yields, Higgs kinematics, associated production properties
- Higher precision in Run 2
 - Higher integrated luminosity
 - Higher cross-sections at $\sqrt{s} = 13$ TeV
 - How to report and interpret the measurements ?
- Contents:
 - Run 1 & Run 2 measurements
 - New interpretation/reporting frameworks in Run 2

Production

1000 events in 10 fb⁻¹

Decay

2

"Typical" Higgs Couplings Measurement

- Measure Higgs event yields:
 - separate Higgs signal from bkg usually by fitting an invariant mass spectrum
 - Report production (σ x BR)

- Measure yields in particular prod. modes/kinematic regions
 - Select regions enriched in the target process (using BDTs, etc.)
 - Extract target event yields using similar methods as above

3

Couplings Measurements: Run 1 and Run 2

• "Couplings" in Run 1: mainly event yields \Rightarrow (σ · B) in all available production and decay modes

- Overall agreement with SM
- 5.5σ for H→ττ !
- $\sigma_{_{\text{tH}}}/\sigma_{_{\text{ggF}}}$: 3.0 σ above SM
- B_{bb}/B_{zz} : 2.5 σ below SM

Fiducial Cross-Section Measurements

√s (TeV)

⇒ Differential cross-section measurements

		SM Prediction	Measurement at √s=13 TeV		
Н→γγ	ATLAS	62.8 ± 3.9 fb	$\sigma_{fid} = 43.2 \pm 14.9$ (stat.) ± 4.9 (syst.) fb		
	VBF-like	2.04 ± 0.13 fb	$\sigma_{fid} = 4.0 \pm 1.4$ (stat.) ± 0.7 (syst.) fb		
	CMS	73.8 ± 3.8 fb	$\sigma_{fid} = 69^{+16}_{-22}(stat.)^{+8}_{-6}(syst.)fb$		
H→ZZ	ATLAS	3.07 ± 0.23 fb	$\sigma_{fid} = 4.54^{+1.02}_{-0.90} \text{ fb}$		
	CMS	2.53 ± 0.13 fb	$\sigma_{fid} = 2.29^{+0.74}_{-0.64}(stat.)^{+0.30}_{-0.23}(sys.)^{+0.01}_{-0.05}(model dep.) fb$		

Run 1 Differential Cross-Sections

Results at $\sqrt{s} = 8$ TeV from:

- $H \rightarrow \gamma \gamma$ (ATLAS, CMS)
- H→ZZ (ATLAS, CMS)
- $H \rightarrow \gamma \gamma \& H \rightarrow ZZ$ Combination (ATLAS)
- H→WW (ATLAS)

Many variables:

- Higgs: p₁^H, |y^H|, |cos θ^{*}|
- Jets: N_{jets} , p_T^{j1} , $|\eta^{j1}|$, p_T^{j2} , Δy_{jj} , $\Delta \phi_{jj}$, m_{jj}
- Event: H_{T} , $\Delta \phi_{\gamma\gamma,jj}$

6

Run 2 Differential Measurements

Preliminary results at $\sqrt{s} = 13$ TeV from

- $H \rightarrow \gamma \gamma$ (ATLAS)
- **H→ZZ** (CMS)

Reaching similar precision to Run 1, still statistics-dominated in all cases

к Framework

In Run 1, Higgs couplings interpreted within the `` κ -framework'':

- κ_x modifiers for all Hxx vertices
 - also $\kappa_{_{\! q}}$ and $\kappa_{_{\! \gamma}}$ for effective ggH and $H\gamma\gamma$ loops, $\kappa_{_{\! H}}$ for Higgs total width
- "LO-inspired" scaling for $i \rightarrow H \rightarrow f$ (use the best available SM prediction for $\kappa=1$)

κ Framework "PR Plot"

Beyond the **k** Framework

• Pros

- Easy to implement
- Well-defined near the SM limit $\kappa_x \rightarrow 1$

• Cons:

- Only well-defined at LO

 Scaling inspired by LO diagrams, cannot be systematically extended to higher orders

–e.g. breaks gauge symmetries \Rightarrow Divergences

- Does not include interactions not already in the SM

- CP-odd operators
- Non-SM tensor structures

 \Rightarrow e.g. no freedom for shape deviations in differential measurements

SMEFT

• SM scale ~ v = 246 GeV, no BSM physics seen below Λ ~ 1 TeV \Rightarrow parameterize the BSM using an EFT extension of the SM

$$L = L_{SM}^{(d \le 4)} + \frac{1}{\Lambda^2} \sum_{i} c_i^{(d=6)} O_i^{(d=6)} + \frac{1}{\Lambda^4} \sum_{i} c_i^{(d=8)} O_i^{(d=8)} + \dots$$

 Usually(*) leading effect from interference of d=6 and SM ~(v/Λ)² and can neglect d≥8 and | c^(d=6) |².

 \Rightarrow Report experimental constraints on the c_i, compare to model predictions

- Straightforward to extend to higher orders in SM couplings
- Many operators: 2499 for n_{gen}=3
 - For n_{gen}=1 (or MFV): "only" 59
 - Operators involving the Higgs boson can be reduced to 17.
- Many ways to define the operator basis on which to expand: SILH basis, Warsaw basis, Higgs basis etc.

(*) Some restrictions may apply, see YR4 Section II.2.2 for details 11

A Bestiary of SMEFT Operators (1)

Using **Higgs Basis**, as defined in YR4, ignoring flavor (n_{aen} =1 or MFV)

 \rightarrow 17 operators (10 CP-even + 7 CP-odd) involving the Higgs boson

 $\Rightarrow \kappa$ framework with effective ($\kappa_{\alpha}, \kappa_{\gamma}$) + CP-odd couplings + modified HZZ structure

YR4 Section II.2.1

A Bestiary of SMEFT Operators (2)

YR4 Section II.2.1

\rightarrow 46 operators not involving the Higgs boson

• 16 W,Z \rightarrow ff couplings modifiers + W mass shift δ m

$$\begin{split} \delta m, \; [\delta g_L^{Ze}]_{ij}, \; [\delta g_R^{Ze}]_{ij}, \; [\delta g_L^{W\ell}]_{ij}, \; [\delta g_L^{Zu}]_{ij}, \; [\delta g_R^{Zu}]_{ij}, \; [\delta g_L^{Zd}]_{ij}, \; [\delta g_R^{Zd}]_{ij}, \; [\delta g_R^{Zd}]_{ij}, \; [\delta g_R^{Wq}]_{ij}, \\ [d_{Gu}]_{ij}, \; [d_{Gd}]_{ij}, \; [d_{Ae}]_{ij}, \; [d_{Au}]_{ij}, \; [d_{Ad}]_{ij}, \; [d_{Ze}]_{ij}, \; [d_{Zu}]_{ij}, \; [d_{Zd}]_{ij}. \end{split}$$

 $c_{3G},~ ilde{c}_{3G}$

• 4 corrections to triple-Z and triple-g couplings

• 25 four-fermion couplings

 $\lambda_z,\, ilde\lambda_z$

 $c_{\ell\ell}, c_{qq}, c'_{qq}, c_{\ell q}, c_{\ell q}, c_{quqd}, c'_{quqd}, c_{\ell equ}, c'_{\ell equ}, c_{\ell edq}, c_{\ell edq}, c_{\ell e}, c_{\ell u}, c_{\ell d}, c_{q e}, c_{q u}, c'_{q u}, c_{q d}, c'_{q d}, c_{e e}, c_{u u}, c_{d d}, c_{e u}, c_{e d}, c_{u d}, c'_{u d}$

Can be constrained using **precision EW** and **flavor** measurements \Rightarrow **Global SM fits are critical to fully constrain the SMEFT** \Rightarrow For **Higgs measurements**, can focus on the other 17 operators

Effective Lagrangian Interpretation of $H \rightarrow \gamma \gamma$ Differential Results

14

Effective Lagrangian (2)

Vary at most 2 parameters simultaneously

Need to include all relevant parameters simultaneously for a full SMEFT analysis

SMEFT: Open Questions

- Full SMEFT measurements should include all operators which induce measurable deviations (can restrict only on symmetry grounds)
 - Many possible deformations to consider
 - Need to interpolate predictions in many dimensions
 - Matrix element reweighting, Morphing...
- Already significant information in current rate + differential measurements
 - Need to establish which combinations of operators can be constrained
- What measurements could increase sensitivity ?
 - Different measurements targeted for different deformations
 - Identify sensitive regions in phase space
 - Identify sensitive variables
 - Need to model correlations if fitting multiple distributions

Simplified Template Cross-Sections

YR4 Section III.2

Similarities to fiducial cross-sections:

- measure cross-sections in truth-level phase space regions.
- Separate out regions to :
 - Maximize sensitivity to SM or BSM effects
 - Minimize sensitivity to theory uncert., models

Points of Difference:

- Split production modes/final states
- Partitions the entire phase space into non-overlapping regions
- No strong matching between truth and reco-level selections: compromise between
 - "complicated" reco selections (BDTs, etc.)
 - simple and well-defined theory selections
- \Rightarrow Point of contact between theory and experiment

Complementary to diff. measurements: fully exclusive split along many variables

- No need for statistical correlations
- Coarser binning

STXS Stage 0

ATLAS ICHEP 2016 Higgs Combination

- Splitting evolves with dataset size (more data ⇒ finer split)
- "Stage 0" based on "production modes" (final states) only
 - Group VBF+ (V→had)H since same final state
 - Restricted to |y_H| <2.5 to avoid extrapolation
- Used for ATLAS ICHEP results: $H \rightarrow \gamma \gamma$ and combination with $H \rightarrow ZZ$.

ATLAS ICHEP 2016 Higgs Combination

STXS Stage 0

STXS Stage 1

Effective Lagrangians

ATLAS: Higgs Characterization Model

$$\mathcal{L}_{0}^{V} = \left\{ c_{\alpha} \kappa_{BM} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{\mu} W^{-\mu} \right] \right.$$

$$\left. - \frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \tilde{A}^{\mu\nu} \right] \right.$$

$$\left. - \frac{1}{2} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \tilde{A}^{\mu\nu} \right] \right.$$

$$\left. - \frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \tilde{A}^{\mu\nu} \right] \right.$$

$$\left. - \frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \tilde{A}^{\mu\nu} \right] \right.$$

$$\left. - \frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \tilde{A}^{\mu\nu} \right] \right.$$

$$\left. - \frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \tilde{A}^{\mu\nu} \right] \right.$$

$$\left. - \frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \tilde{A}^{\mu\nu} \right] \right.$$

$$\left. - \frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \tilde{A}^{\mu\nu} \right] \right.$$

$$\left. - \frac{1}{2} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \tilde{A}^{\mu\nu} \right] \right] \right\} X_{0}$$

$$CMS: "JHU Model": based on Lorentz structure, also a:$$

$$L(HVV) \sim a_{1} \frac{m^{2}}{2} HZ^{\mu} Z_{\mu} - \frac{\kappa_{1}}{(\Lambda_{1})^{2}} m^{2}_{Z} HZ_{\mu} UZ^{\mu} - \frac{1}{2} a_{2} HZ^{\mu\nu} Z_{\mu\nu} - \frac{1}{2} a_{3} HZ^{\mu\nu} Z_{\mu\nu}$$

$$\left. + a_{1}^{WW} m_{W}^{2} HW^{+\mu\nu} W_{\mu}^{-\mu} - \frac{1}{(\Lambda_{1})^{2}} m_{W}^{2} H(\kappa_{1}^{WW} W_{\mu}^{-W} W^{+\mu} + \kappa_{2}^{WW} W_{\mu}^{+} W^{-\mu})$$

$$- a_{2}^{WW} HW^{+\mu\nu} W_{\mu\nu} - a_{3}^{WW} HW^{+\mu\nu} \tilde{W}_{\mu\nu}$$

Almost identical – in both cases include κ + modified HVV dynamics

 $+\frac{\kappa_2^{Z\gamma}}{\left(\Lambda_1^{Z\gamma}\right)^2}m_Z^2HZ_{\mu}\partial_{\nu}F^{\mu\nu}-a_2^{Z\gamma}HF^{\mu\nu}Z_{\mu\nu}-a_3^{Z\gamma}HF^{\mu\nu}\tilde{Z}_{\mu\nu}-\frac{1}{2}a_2^{\gamma\gamma}HF^{\mu\nu}F_{\mu\nu}-\frac{1}{2}a_3^{\gamma\gamma}HF^{\mu\nu}\tilde{F}_{\mu\nu}$

- More freedom than SMEFT (no gauge invariance) \Rightarrow more parameters
- Some missing contributions (e.g. HVff operators)

Eur. Phys. J. C75 (2015) 476 Eur. Phys. J. C75 (2015) 476

·2 In λ

ATLAS

02

04

0.6

0.8

Higgs Pseudo-Observables

Idea: encode all the experimentally available information with only weak assumptions (e.g. crossing symmetry)

- Report experimental measurements as POs, and compute them in specific models
- One PO per accessible observable
 - $\mathbf{H} \rightarrow \gamma \gamma$: $\Gamma(\mathbf{H} \rightarrow \gamma \gamma)$, or $\kappa_{\gamma\gamma} = \Gamma(\mathbf{H} \rightarrow \gamma \gamma) / \Gamma_{sM}(\mathbf{H} \rightarrow \gamma \gamma)$
 - $H \rightarrow ff$: $\Gamma(H \rightarrow ff)$, or $\kappa_f = \Gamma(H \rightarrow ff) / \Gamma_{SM}(H \rightarrow ff)$
 - $H \rightarrow VV \rightarrow 4I$: Separate POs for
 - $H \rightarrow V_T V_T$ and $H \rightarrow V_L V_L$
 - Resonant and non-resonant contributions ($H \rightarrow Vff$)
 - \rightarrow Use the same "VV" POs for VBF and VH production

+ CP-odd parameters

where experimentally accessible

Higgs Pseudo-Observables

From YR4 and G. Isidori's talk at HC16

Process		CP-even	CP-odd	
H→VV		$\kappa_{zz}^{}, \epsilon_{zz}^{}, \kappa_{z\gamma}^{}, \kappa_{\gamma\gamma}^{}$	$\boldsymbol{\varepsilon}_{zz}^{CP}, \boldsymbol{\delta}_{z\gamma}^{CP}, \boldsymbol{\delta}_{\gamma\gamma}^{CP}$	
	(no custodial symm.)	(κ _{ww} , ε _{ww})	(E _{WW} ^{CP})	
H→VII		$\boldsymbol{\epsilon}_{zeL}, \boldsymbol{\epsilon}_{zeR}, \boldsymbol{\epsilon}_{zv}$		
	(no custodial symm.)	(Re ε _{wel})	(Im ɛ _{wel})	
VBF, VH		ε _{zuL} , ε _{zuR} , ε _{zdL} , ε _{zdR}		
	(no custodial symm.)	(Re ε _{wel})	(Im ε _{weL})	
H→ff		κ _f (f=t,b,τ)	δ_{f}^{CP}	
ggF		۴ _g		
Г _н		κ _H		

Total : **17 CP-even + 6 CP-odd** POs (no custodial symm. : **21 + 8**) Assuming flavor universality

Open Issues

- Need MC generators to provide predictions:
 - HC/JHU: used in Run 1
 - SMEFT: NLO generators being validated
 - POs: under development
- Tools for multidimensional measurements (Morphing)
- How to report the likelihoods ?
 - Last bins in distributions always have low statistics, not Gaussian
 - Not very Gaussian even now \Rightarrow **Covariance matrix is not sufficient**
- Which framework to use for reporting ? Many possibilities:

Outlook

- Many new ideas and possibilities being put forward recently
 - Still **many open issues** to be resolved, theory/experiment interactions very important now to define this program.

CMS-DP-2016-064

Many interesting measurements possible in Run 2 and beyond!

Additional Material

Fiducial Cross-Section Measurements

	Lepton definition	Requirements for the $\mathrm{H} ightarrow 4\ell$ fiducial phase space		
Muons: $n > 5 \text{ GeV}$	$ \mathbf{n} < 2.7$ Electrons: $\mathbf{n} > 7$ GeV $ \mathbf{n} < 2.47$	Lepton kinematics and isolation		
which $p_{\rm T} > 5 {\rm GeV}$,	$ \eta < 2.7$ Electrons. $p_{\rm T} > 7$ GeV, $ \eta < 2.47$	Leading lepton $p_{\rm T}$	$p_{\rm T} > 20~{ m GeV}$	
	Pairing	Next-to-leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 10~\mathrm{GeV}$	
Leading pair:	SEOS lepton pair with smallest $ m_7 - m_{\ell\ell} $	Additional electrons (muons) $p_{\rm T}$	$p_{\mathrm{T}} > 7(5) \mathrm{~GeV}$	
		Pseudorapidity of electrons (muons)	$ \eta < 2.5(2.4)$	
Sub-leading pair:	Remaining SFOS lepton pair with smallest $ m_Z - m_{\ell\ell} $	Sum of scalar $p_{\rm T}$ of all stable particles within $\Delta R < 0.4$ from lepton	$< 0.4 \cdot p_{ m T}$	
	Event selection	Event topology		
Lepton kinematics:	Leading leptons $p_T > 20, 15, 10$ GeV	Existence of at least two same-flavor OS lepton pairs, where leptons satisfy criteria above		
	1000000000000000000000000000000000000	Inv. mass of the Z_1 candidate	$40{ m GeV} < m_{Z_1} < 120{ m GeV}$	
Mass requirements:	$50 < m_{12} < 106 \text{ GeV}; 12 < m_{34} < 115 \text{ GeV}$	Inv. mass of the Z_2 candidate	$12 { m GeV} < m_{Z_2} < 120 { m GeV}$	
Lepton separation:	$\Delta R(\ell_i, \ell_i) > 0.1(0.2)$ for same(opposite)-flavour leptons	Distance between selected four leptons	$\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$	
I/// veto:	$m(l, l_{1}) > 5$ GeV for all SEOS lepton pairs	Inv. mass of any opposite sign lepton pair	$m_{\ell^+\ell'^-}>4{ m GeV}$	
$5/\phi$ veto.	$m(t_i, t_j) > 5$ GeV for an SFOS repton pairs	Inv. mass of the selected four leptons	$105{ m GeV} < m_{4\ell} < 140{ m GeV}$	
Mass window:	$115 < m_{4\ell} < 130 \text{ GeV}$			

• $\frac{p_{T,gen}^{\gamma_{1,(2)}}}{m_{\gamma\gamma}} > \frac{1}{3}(\frac{1}{4})$ for the generator-level transverse momentum of the leading (sublead-ing) photon,

- $|\eta_{gen}^{\gamma}| < 2.5$ for the generator-level pseudorapidities of both photon
- the generator-level isolation of the photons, calculated as the sum of the transverse momenta of all stable particles inside a cone of aperture R = 0.3 around the photon, is required to be smaller than 10 GeV.

Interpretation: ATLAS+CMS Combination

Interpretation: ATLAS+CMS Combination

Interpretation: ATLAS+CMS Combination

Parameter value

STXS Stage 1

• ATLAS measurements of STXS Stage 1 : $H \rightarrow gg, H \rightarrow ZZ$ and combination

 $\sigma_{\rm ggF+b\bar{b}H+t\bar{t}H} \cdot \mathcal{B}(H \to ZZ^*) = 1.80^{+0.49}_{-0.44} \text{ pb}$ $\sigma_{\rm VBF} \cdot \mathcal{B}(H \to ZZ^*) = 0.37^{+0.28}_{-0.21} \text{ pb}$ $\sigma_{\rm VH} \cdot \mathcal{B}(H \to ZZ^*) = 0^{+0.15} \text{ pb}$
$$\begin{split} \sigma_{\mathrm{SM,ggF}+b\bar{b}H+t\bar{t}H} \cdot \mathcal{B}(H \to ZZ^*) &= 1.31 \pm 0.07 \text{ pb} \\ \sigma_{\mathrm{SM,VBF}} \cdot \mathcal{B}(H \to ZZ^*) &= 0.100 \pm 0.003 \text{ pb} \\ \sigma_{\mathrm{SM,VH}} \cdot \mathcal{B}(H \to ZZ^*) &= 0.059 \pm 0.002 \text{ pb} \end{split}$$

σ_{ggH}	$\times \mathcal{B}(H \rightarrow$	γγ) :	=	$63 {}^{+30}_{-29}$	fb
$\sigma_{ m VBF}$	$\times \mathcal{B}(H \rightarrow$	γγ) :	=	$17.8 \begin{array}{c} +6.3 \\ -5.7 \end{array}$	fb
$\sigma_{ m VHlep}$	$\times \mathcal{B}(H \to$	γγ) :	=	$1.0 \ ^{+2.5}_{-1.9}$	fb
$\sigma_{ m VHhad}$	$\times \mathcal{B}(H \to$	γγ) :	= -	$-2.3 \begin{array}{c} +6.8 \\ -5.8 \end{array}$	fb
$\sigma_{t \bar{t} H}$	$\times \mathcal{B}(H \to$	γγ) :	= -	$-0.3 \begin{array}{c} +1.4 \\ -1.1 \end{array}$	fb

ATLAS Preliminary m_H=125.09 GeV

Parameter value norm. to SM value

Better Frameworks: POs

 H→VV→4I: more kinematic information available (mll, mT, etc.), so more POs:

- Separate POs for transverse and longitudinal \
- Applies to Z(*)Z(*), W(*)W(*), Z(*)g,

 $J^{
u}_{f'}$

 J^{μ}_{f}

h

SMEFT Measurement Sensitivity

Figure 196: Marginalized 95% confidence level constraints for the dimension-six operator coefficients for current data (blue), the LHC at 14 TeV with 300 fb⁻¹ (green), and with 3000 fb⁻¹ (orange). The expected constraints are centred around zero by construction. For the left panel we only use signal strengths, while on the right differential $p_{T,h}$ measurements are included. The inner error bar depicts the experimental uncertainty, the outer error bar shows the total uncertainty. Figure from Ref. [848].