Search for dark matter with a signature of Higgs plus missing transverse energy in ATLAS

Ren-Jie Wang LPNHE, Institute Lagrange de Paris on behalf of ATLAS collaboration

Motivation and Detection of Dark Matter

Direct Method

Indirect Method

- Dark Matter (DM) has been one of the major unsolved problems in physics nowadays
 - What is the identity of DM? Is it a particle or not?
 - Much evidence from astrophysical measurements, but no evidence yet for non-gravitational interactions between DM and SM particles
- Three detection ways:
 - Direct method: DM-nucleon elastic scattering, results in a recoil (with energy ~ 50 keV)
 - Indirect method: DM pair-annihilation, decay to various observable particles: $\chi\chi \rightarrow tt$, bb, WW, ZZ, $\gamma\gamma$,
 - Collider method: <u>main topic of this talk</u>

Collider Method — DM searches at the LHC

Collider Method

Run2 Run1

- Two different paths:
 - Effective field theory (EFT) approach: several nonrenormalizable operators without the UV physics specified
 - largely model-independent
 - but cannot be reliable when parton energies in the events are comparable to the effective mass scale
 - don't account the constraints on the UV physics generating these operators (e.g. contains from recent dijet/dilepton searches)
 - Simplified models: UV particles are kept as degrees of freedom, but more model-dependent

Collider Method — DM searches at the LHC (Mono-X)

- Mono-X: a final state of MET + Jet(s), photon, W, Z, Higgs, top/b quark
- X can be emitted
 - either directly from ISR through SM gauge interactions
 - or from a BSM vertex coupling

Introduction — mono-Higgs

- Difference between mono-Higgs and other mono-X searches
 - ISR Higgs boson is Yukawa suppressed, a mono-Higgs signal can only be through BSM vertex
- This talk will focus on Higgs decaying to $ZZ^* \rightarrow 4\ell$, $\gamma\gamma$, and bb
- Three simplified models:
 - · Z'-2HDM: vector mediator (Z'), two-Higgs-doublet: h; H (CP-even); A₀(CP-odd); H±;
 - DM only coupling to pseudo-scalar A_0 , $Z' \rightarrow A_0 + h$
 - free parameters: g_q , g_X , M_{Z^1} , M_{A0} , M_X , mixing angles h-H, A_0 -H
 - Z'_B: a vector boson Z' with baryon number coupling with Higgs,
 - free parameters: g_q , g_X , $g_{Z'}$, $M_{Z'}$, M_X , mixing angle h-h_B
 - Scalar model: a massive scalar S
 - free parameters: g_q, y_x, M_S, M_X, coupling S and h, mixing angle S-h

Mono-Higgs($\rightarrow ZZ^* \rightarrow 4\ell$)

- $H \rightarrow ZZ^* \rightarrow 4\ell$ has low BR, but this channel is very clean
- Multi-leptons triggers (Efficiency > 99%)
- Event selection: at least four well-identified, isolated leptons, same flavor-opposite-charge lepton pair match to Z mass
- Background:
 - ZZ* (irreducible): from simulation with NNLO@QCD, NLO@EWK correction
 - ttV/VV: from simulation
 - · Z+jets, ttbar: Data driven estimated shape and normalization
- Signal region: M_{4ℓ} [110,140] GeV, MET>100 GeV
- No significant BSM excess is observed! Upper limit is set on the production cross section times BR as a function of mediator mass in both $Z'_{\rm B}$ and Scalar scenarios

ATLAS-CONF-2016-087

Mono-Higgs $(\rightarrow \gamma \gamma)$

- Diphoton trigger (Efficiency > 99%)
- Two well-defined photons with $p_T > 35(25)$ GeV, and relative cut $p_T/m_{\gamma\gamma} > 0.35~(0.25)$
- MET is calculated w.r.t. the diphoton vertex including track-based soft term
- Non-resonant background
 - $\gamma\gamma$: dominant, need large METSig cut to reject
 - γ +jets: second dominant, similar to $\gamma\gamma$ when the jet is misidentified as a photon
 - $V\gamma$, $V\gamma\gamma$: visible contribution at High METSig, where a lepton is misidentified a a photon or not well-reconstructed (induce fake MET)
- · Resonant background: SM Higgs, ZH is irreducible

Category	$S_{E_{\mathrm{T}}^{\mathrm{miss}}} [\sqrt{\mathrm{GeV}}]$	$p_{\mathrm{T}}^{\gamma\gamma}$ [GeV]
High $S_{E_{\mathrm{T}}^{\mathrm{miss}}}$, high $p_{\mathrm{T}}^{\gamma\gamma}$	> 7	> 90
High $S_{E_{\mathrm{T}}^{\mathrm{miss}}}$, low $p_{\mathrm{T}}^{\gamma\gamma}$	> 7	≤ 90
Intermediate $S_{E_{\scriptscriptstyle { m T}}^{ m miss}}$	$>$ 4 and \leq 7	> 25
Rest	_	> 15

Mono-Higgs($\rightarrow \gamma \gamma$)

- Double-sided Crystal Ball function is used to model the signal shape as well the SM Higgs
- Data-driven non-resonant background:
 - High METSig category: simple exponential
 - Intermediate and rest categories: exponential of 2nd order polynomial.
- No significant BSM excess is observed!

Mono-Higgs $(\rightarrow \gamma \gamma)$

 Upper limit is set on the production cross section times BR as a function of mediator mass in both Z'_B and Z'-2HDM scenarios

Mono-Higgs(→bb)

MET Trigger (Efficiency: ~100%@200GeV)

• Signal region: Resolved Merged boost

- Resolved: two b-tagged jets + intermediate MET
- Merged: one large-R jet with two b-tagged tracks
 + large MET
- Background:
 - two main backgrounds: W/Z+jets (15~65%);
 ttbar(45~80%)
 - control regions are defined with 1-/2-lepton events

Resolved Region (E_T^{miss} < 500 GeV) Merged Region (E_T^{miss} > 500 GeV) small radius jets large radius jet

MET = 694 GeV, mJ = 106 GeV, and two b-tagged track jets

Mono-Higgs(→bb)

- No significant BSM excess is observed!
- · Shape-based limit is obtained from dijet/single-large-R-jet mass simultaneously in all SRs and CRs.
- 2D Limit contour (m_{DM}, m_Z) are set for both Z'_B and Z'-2HDM scenarios

Summary

- The dark matter searches with a signature of Higgs plus missing transverse energy in ATLAS are presented using 2015/2016 data
- Spirit: using the recent discovered Higgs boson as a tool for new possible discovery
- No significant BSM excess is observed yet, but looking forward to results using full 2015+2016 dataset.

Thank you!