Search for baryonic number violation at LHC

Simon Berlendis

Run: 282712 Event: 1212489545 2015-10-21 09:39:30 CEST

EXPERIMENT

Δς

Baryonic number violation (BNV)

- The **baryonic** number symmetry is not expected to be **conserved** in BSM physics
 - "Accidental" in the SM. Not associated to any fundamental force.
 - Even violated in the SM at quantum level (sphaleron)
 - Baryonic asymmetry in the Universe.
 We actually need baryonic violation according to Sakharov rules!

 \rightarrow Necessity to search for BNV at LHC

- However, low energy observations give strong constraints on BNV
 - Proton stability
 - \bar{n} -*n* oscillations
- But BNV is still possible at LHC scale [arXiv:1210.6598, C. Smith et al]
 - Violation of two units ($\Delta B = 2$) ex: $u_i d_j d_k \times u_i d_j d_k$, (with i,j,k flavor indices)
 - Involving third generation
 - \rightarrow Search for **tops** + extra quarks
- LHC is a powerful machine with a non-zero initial baryonic number !

R-parity violation (RPV) supersymmetry

- Supersymmetry includes **leptonic** and **baryonic** number violation vertex: $W = \mu HL + \frac{1}{2}\lambda_{ijk}L_iL_jE_k + \lambda'_{ijk}L_iQ_jD_k + \frac{1}{2}\lambda''_{ijk}U_iD_jD_k$
- Originally suppressed by including a R-parity conservation: $R = (-1)^{3(B-L)+2s}$
 - Keep the proton stable
 - Stable and dark-matter-candidate LSP
 - \rightarrow MSSM start to be constrained by the LHC 13TeV limits
- Alternative: R-parity violation SUSY
 - By considering a **hierarchy** order between the flavor couplings $\lambda_{ijk}/\lambda'_{ijk}/\lambda''_{ijk}$
 - Achieved in Minimal Flavor Violation (MFV) scenario [arXiv:0710.3129v2]
 - λ''_{3jk} will naturally be the highest term, involving **top** quarks.
 - Enable to respect low energy constraints

 \rightarrow Allow us to search for BNV processes at LHC scale !

$oldsymbol{\lambda}_{IJK}''$	Full MFV	Holomorphic MFV		
	ds sb db	ds sb db		
	$u \left(10^{-5} \ 10^{-5} \ 10^{-5} \right)$	$\left(\begin{array}{ccc} 10^{-13} & 10^{-8} & 10^{-10} \end{array} \right)$		
an eta = 5	c 10 ⁻⁴ 10 ⁻⁶ 10 ⁻⁵	10^{-10} 10^{-6} 10^{-7}		
	$t (0.1 \ 10^{-5} \ 10^{-4})$	$\left(10^{-6} \ 10^{-5} \ 10^{-6} \right)$		

From <u>arXiv:1307.1355</u>

Search for RPV at LHC

• We search for **generic topology** from RPV models involving the 3rd generation:

Same-sign d-squark production:

- $\Delta B = 2 \text{ processes } !$
- Leading to same-sign leptons + b-jets + extra jets (and low MET)
- RPV signal regions defined for 13.2 fb⁻¹ of 13TeV data luminosity:
 - Based on **same-sign lepton** requirement
 - Giving the best discovery sensitivity

Signal region	$N_{ m lept}^{ m signal}$	$N_{b-\rm jets}^{20}$	$N_{\rm jets}$	$p_{\mathrm{T,jets}} \; [\mathrm{GeV}]$	$E_{\rm T}^{\rm miss}$ [GeV]	$m_{\rm eff}~[{\rm GeV}]$	Other
SR1b-DD	≥ 2	≥ 1	≥ 4	50	-	> 1200	≥ 2 negatively-charged leptons
SR3b-DD	≥ 2	≥ 3	≥ 4	50	-	> 1000	≥ 2 negatively-charged leptons
SR1b-GG	≥ 2	≥ 1	≥ 6	50	-	> 1800	-

From ATLAS-CONF-2016-037

Background composition

1) True same-sign/three leptons

- From Standard Model
- Dominant: $t\bar{t} + V$ and VV
- Simulated by Monte-Carlo method

2) Fake/non-prompt lepton

- Light jet reconstructed as lepton
- Or lepton coming from heavy-flavor jet
- Estimated by data-driven method

3) Charge mis-identification

- Detector effect
- Negligible for muon
- Two sources:
 - Tracker charge reconstruction efficiency
 - Electron from photon conversion
- Estimated by data-driven method

Results (1)

Events / 200 GeV

6

4⊦

2

600

800

1000

1200

ATLAS Preliminary SR1b-GG before met cut

→ Data ////// Total SM

tťV

Rare Charge-flip

vv

1400

Fake/non-prompt

1600

SB

> 1800

m_{eff} [GeV]

√s=13 TeV, 13.2 fb⁻¹

- Comparison data/expected background were performed with 13.2fb⁻¹ of data
 - Unfortunately no significant excess was found
 - 95% CL limits are set on simple scenario of RPV models:
 - Assuming branching ratio = 1
 - In 2D mass plane (m_{g̃},m_{q̃})

From ATLAS-CONF-2016-037

Results (2)

From ATLAS-CONF-2016-037

- The search is not over !
 - 36fb⁻¹ of recorded luminosity this year !
 - We still have sensitivity for a large part of RPV with more luminosity
 - And we have new ideas to improve the search !

Other baryonic RPV searches in ATLAS

p

- 1 lepton + multijet search
 - <u>ATLAS-CONF-2016-094</u>
 - Targeting gluino pair-production
 - Similar 13TeV limits

- Four-jet final states:
 - <u>ATLAS-CONF-2016-022</u>
 - Targeting stop pair-production
 - Stop mass exclusion: ~400GeV

Conclusion

- The search for RPV models is theoretically motivated by the search of baryonic number violation
 - Large effort is performed in the ATLAS collaboration
- For the moment, no excess was found in the ATLAS experiment
- Limits are set on RPV simplified models
- The limits are also re-interpreted by RPV phenomenologists
 - <u>arXiv:1601.03737v4</u>, <u>arXiv:1403.7197v1</u>

Thank you for listening! Question?

Backup

Low energy constraints on RPV

• Proton stability: $\tau_p > 10^{34}$ years

$$|\lambda'_{i1k}\lambda''_{11k}| < 2 \times 10^{-27} \left(\frac{\widetilde{m}}{100 \, GeV}\right)^2$$

• \overline{n} -*n* oscillations:

$$\begin{aligned} |\lambda''_{11k}| &< 10^{-7} \left(\frac{\widetilde{m}}{100 \ GeV}\right)^{\frac{5}{2}} \\ |\lambda''_{321,313}| &< 10^{-2} \left(\frac{\widetilde{m}}{200 \ GeV}\right)^{5/2} \end{aligned}$$

• \overline{K} - K oscillations:

$$|\lambda^{\prime\prime}_{321}\lambda^{\prime\prime}_{313}| < 10^{-3} \left(\frac{m_{\widetilde{u_i}}}{100 \; GeV}\right)$$

arXiv:1602.04821v2 arXiv:hep-ph/0406039v2

Promising processes

$\Delta B \Delta L$	Fermionic cores	Examples	Promising LHC processes	$A_{e\mu}$
0 ± 6	NNN NNN	$ u_e u_\mu u_ au\otimes u_e u_\mu u_ au$	$u\bar{u} o e^-\mu^- u_ au u_e u_\mu u_ au W^+ W^+$	0
$\pm 1 \pm 3$	UUU EEN	$tcu{\otimes}e^{-}\mu^{-} u_{ au}$	$u c \rightarrow \bar{t} e^+ \mu^+ \bar{\nu}_{ au}$	+
			$u g ightarrow ar{t} ar{c} e^+ \mu^+ ar{ u}_ au$	+
			$g g ightarrow ar{t} ar{c} ar{u} e^+ \mu^+ ar{ u}_{ au}$	0
			$uc ightarrowar{t}$ $e^+\mu^+ au^+$ W^-	+
	UUD ENN	$tcd{\otimes}e^{-} u_{\mu} u_{ au}$	$dc ightarrow ar{t} e^+\mu^+ar{ u}_ au W^-$	+
	UDD NNN	$tsd \otimes u_e u_\mu u_ au$	$ds ightarrowar{t}~~e^+\mu^+ar{ u}_ au~~W^-W^-$	+
$\pm 1 \mp 3$	UDD $\overline{N}\overline{N}\overline{N}$	$tsd\otimesar u_ear u_\muar u_ au$	$ds ightarrow ar{t} e^-\mu^- u_ au W^+W^+$	_
	$\mathrm{DDD}\; ar{\mathrm{E}} ar{\mathrm{N}} ar{\mathrm{N}}$	$bsd{\otimes}e^+ar{ u}_\muar{ u}_ au$	$ds ightarrowar{t}$ $e^-\mu^- u_ au$ W^+W^+	_
$\pm 2 0$	UDD UDD	$tsd{\otimes}tsd$	$dd ightarrowar{t}ar{t}$	_
			$dg ightarrowar{t}ar{t}$	_
			$gg ightarrowar{t}ar{t}$	0
		$tcd\otimes bsd$	$du ightarrow ar{t}ar{t} $	_
			$d d ightarrow ar{t} ar{t} \ ar{c} ar{s} \ W^+$	_

Table 1: First two columns: The selection rules for flavor-diagonal B and/or L violation and corresponding six-fermion cores. U, D, E, and N are flavor-generic up-, down-type quarks, charged lepton and neutrino, respectively. Charge-conjugate interactions are understood as well as antisymmetrization over the quark or lepton flavor indexes. Third column: Example of non-local fermionic channels corresponding to each fermionic core, with specific flavor assignments. Fourth column: Promising flavor-diagonal B and/or L violating transitions to look for at the LHC for each non-local fermionic channel. Fifth column: The expected dilepton charge asymmetry, as defined in Eq. (1), for an $e\mu$ final-state pair.

From arXiv:1210.6598

Four-jet search

• Pairing jets with the lower:

 $\Delta R_{min} = \sum_{i=1,2} |\Delta R_i - 1.0|$

• Selection in A and $cos\theta^*$

 $A = \frac{|m_1 - m_2|}{m_1 + m_2}$

 Search for narrow peak in m_{avg} distribution:

$$m_{avg} = \frac{m_1 + m_2}{2}$$

 Background estimated with ABCD method

1 lepton + multi-jet

- Requirement: 1lepton and >=5jets
- Template global likelihood fits in jets and b-jets multiplicity

Charge mis-identification: Method

- Based on the Charge flip rates ε
 - Defined as the probability of one electron to have its charge mis-identified
 - Parameterized on Pt and $|\eta|$
- Then, assuming a **true** number of **opposite-sign** dielectron events, we have:

 $N_{SS}^{reco} = N_{OS}^{true}(\epsilon_1(1-\epsilon_2) + \epsilon_2(1-\epsilon_1))$ $N_{OS}^{reco} = N_{OS}^{true}((1-\epsilon_1)(1-\epsilon_2) + \epsilon_1\epsilon_2)$

 ε_1 charge flip rate of 1st electron ε_2 charge flip rate of 2nd electron

• N_{ss}^{reco} can be estimated by weighting N_{os}^{reco} by:

$$w = \frac{\epsilon_1(1-\epsilon_2) + \epsilon_2(1-\epsilon_1)}{(1-\epsilon_1)(1-\epsilon_2) + \epsilon_1\epsilon_2}$$

- Charge flip rate estimation on enriched $pp \rightarrow Z \rightarrow ee$ data events:
 - $m_{ee} \in [m_z X, m_z + X]$
 - ex: X=10GeV in CMS T5/3
 - Count the number of e^+e^- and same-sign $e^\pm e^\pm$
 - Charge flip rates estimated by Likelihood minimization

$$\mathcal{L}(\epsilon|N, N_{ss}) = Poisson(N_{ss}|N, \epsilon)$$

Fake/non-prompt lepton estimation method

• Lepton definition:

- The fake estimation methods rely on the definition of lepton criteria:
 loose and **tight** criteria
 - Tight = loose + isolation + identification criteria
- Matrix method:

$$\begin{pmatrix} N_t \\ N_{\bar{t}} \end{pmatrix} = M \begin{pmatrix} N_{real} \\ N_{fake} \end{pmatrix} \quad M = \begin{pmatrix} \epsilon_r & \epsilon_f \\ (1 - \epsilon_r) & (1 - \epsilon_f) \end{pmatrix} \qquad \substack{t = \text{tight} \\ \bar{t} = \text{loose but not tight}}$$

- N_{fake} is estimated by weighting N_t and $N_{\bar{t}}$ with the elements of M^{-1}
- Generalized for 2 and 3 leptons

• Efficiency estimation:

- ϵ_f estimated on enriched **fake** lepton region
 - SS Dilepton region: Tight muon + 1 loose lepton (V+jets and ttbar)
- ϵ_r estimated on enriched real lepton region
 - Dilepton region: Z mass window (Z->II)
- Parameterized in Pt and $|\eta|$ of the leptons

Real and fake efficiency measurement and systematic

• Efficiency estimation:

- ϵ_f estimated on enriched **fake** lepton region
 - Single lepton region: Low MET and MT (multijet background)
 - *SS Dilepton* region: Tight muon + 1 loose lepton (V+jets and ttbar)
- $-\epsilon_r$ estimated on enriched real lepton region
 - *Single lepton* region: High MET and MT (W+jets)
 - Dilepton region: Z mass window (Z->II)
- Real lepton contribution are subtracted from fake region
 - Systematic uncertainty associated to this subtraction

• Kinematic dependence:

- Efficiency usually **parameterized** in **Pt** and $|\eta|$ of the leptons
- Trigger can also contain isolation/identification criteria
 The efficiencies can be split for different trigger
- **Other** kinematic dependence can be also taken into account (ex: Pt_{jet} , $\Delta R(I, jet)...$) or be taken as a **systematic** (ex: H_T)