
10/10/2016

1

Reproducible High Performance computing

for stochastic models and simulations

Hill David

Université Blaise Pascal

ISIMA/LIMOS UMR CNRS 6158

REPRODUCIBILITY

BEGINNER’s

10/10/2016

2

Reproducibility ? (defn.)
In Fomel and Claerbout 2009:

Reproducibility often means replication

depending on scientists

In Drummond 20091:

“Reproducibility requires changes; replicability avoids them”

In Demmel and Nguyen 2013

“Reproducibility, i.e. getting bitwise identical results from

run to run” > means in fact : “repeatability”

In Revol and Théveny 2013.

“What is called numerical reproducibility is the problem of

getting the same result when the scientific computation is run

several times, either on the same machine or on different

machines, with different numbers of processing units, types,

execution environments, computational loads, etc.”

1: http://www.site.uottawa.ca/ICML09WS/papers/w2.pdf

A recent study at Arizona University

This study examined 601 papers from ACM conferences and journals,
attempted to locate any source code that backed up the published
results, and, if found, tried to build the code.
http://reproducibility.cs.arizona.edu/

10/10/2016

3

Some Reasons for numerical

reproducibility failures

The goal of Exascale computing is to multiply by 10x the

performance of the fastest machine on operation.

We can anticipate that Exascale systems will have around

around 109 computing cores.

This also means that at the same time each standard nodes

will be able to deliver tenths of teraflops.

This will help to generate much faster, more precise and

more complex simulations, higher quality medical imaging

will yield faster and personalized medicine with smarter

medical diagnostic and treatment.

Parallel Stochastic simulations are useful at this scale,

particularly because they are “fault” tolerant.

Towards Exascale Computing…

10/10/2016

4

7

Some scalability problems
1. Energy questions

2. Reliability (hardware errors will be the rule…)

 Software & Hardware (including « soft » errors)

3. Performances: the need for « disruptive technologies »

 Processors, InterConnect, IO (at affordable energy cost)

4. Really ‘Big’ data & output Results interpretability

5. Software in many area:

 Focus : optimization speed while keeping Numerical
reproducibility and repeatability (ability to debug !)

8

Programmability

Exascale application will involve approximately

around O(109) logical cores (hardware threads).

No human being can program, debug or optimize

directly this many threads.

Hope: High-level languages and DSL will allow us to express

that parallelism more effectively

Positive: data-parallel applications, can use the same kind of

automation that has proved successful in areas like geometry

and meshing and then map them onto complex graphical

representations.

Task-parallel applications: we can give a new focus on

statistical methods and Monte Carlo approaches
to develop more resilient software.

10/10/2016

5

9

Reliablity

Mandatory co-design (Hard. & Soft.) for HPC

They are currently separated (eg. Introduction of- Out of

order intructions…) is it a real option for “Exascale Comp” ?

Hardware designers have been struggling with how to make

systems a thousand times more reliable per bit-operation to

keep us at the same level we are at in today’s best systems.

The only reason to do Exascale computing is to address

increasingly more complex issues. This will require even more

complex software.

Software complexity is the N°1 cause of unreliability

in computation today… far exceeding hardware’s worst

efforts!

Zoom in: « Out of Order Execution »

of floating point instructions

Out-of-order execution is also known as dynamic execution. Most

modern high-performance microprocessors optimize the execution

of instructions based on the availability of input data to avoid

delays.

The original order of instructions in a program is no more respected.

The micro-processor avoids having parts of its internal computing

units being idle by processing the next instructions which are able

to run immediately and “independently”.

It is the equivalent of the software dynamic

recompilation (or just-in-time compilation)

which improves instruction scheduling.

Remember:

floating point arithmetic is not associative (for + & *)

ex: a+(b+c) != (a+b)+c.

10/10/2016

6

11

Reliability & HPC…

…Silent & Soft errors…
1. Change the system state (external forces)

 Alpha particles

 Cosmic rays (High Energy Particles from space)

 Thermal neutrons

 Variation in voltage, temperature, etc.

2. They are at the origin of ECC…

1. To avoids bits flips in memory cells

2. There is also a rising of soft errors in arithmetic units !!!

3. The more we size down the more this problem increases.

4. Chip manufacturers spend money and silicon space to avoid

this kind of errors

3. Soft errors are difficult to detect and reproduce – use spare

time of SuperMachines ?

12

Silent Data & Result Corruption

The integrity and the accreditation of the Science

discoveries we want to make with computers is

threatened (electrons speed above light speed…?!)

Soft errors are not only corrupting data,

but they now affect calculations. (1 per month

currently, up to one per hour at Exascale !)

ECC is essential for memory, but is does not solve

this problem. We also have to face this with O.S.

systems, middleware, and programming models.

Indeed, soft errors will increase with the machine

size and they also increase within modern arithmetic

units.

10/10/2016

7

13

Protecting state & logic (Reliablity)

We can effectively protect correctness of state but

correctness of logic poses special challenges.

State can be protected at about a 10% energy overhead.

Logic correctness requires more invasive approaches with

some degree of redundancy that could well exceed the 10%

overheads

Current R&D focuses on residue checking (self checking FPU)

and redundant multi-threading. This approach has a

significant energy overheads;

Due to the energy issues, we are going to be more limited

than we should have been in protecting logic paths.

This will require a significant degree of cooperation between

software and hardware engineers.

14

HW/SW Codesign (for Reliablity)

Can we identify at compile time certain critical

regions which need stronger correctness guarantees?

We are already generating terabytes to petabytes of

state per second. At exascale we will be generating

exabytes of state each second.

A single wrong bit can vitiate the entire calculation.

For many scientific calculations: we should be able

to gracefully tolerate many kinds of bit errors, and

also the loss of many kinds of local resources.

For example: in many Monte Carlo simulations, the

loss of a processor does not imply the inherent

failure of the simulation.

10/10/2016

8

15

Checkpointing (Reliablity)

Limits of classical checkpointing will be reached : a fault every

hours (or less) with current MBTF – but an Exascale checkpoint

could last 30 min. at 1 Tb/s without the use of exepensive

disruptive technologies (Ultra Fast SSD, PCM memories)

Without a radical change we are going to be

much worse than we are today…

We have to build a much higher level of local check-pointing

capability into our software and hardware systems.

Parallel Stochastic Simulations could checkpoint must faster

with only intermediate results and all the pseudo-random

number generator statuses.

Using raided non-volatile memory, we could checkpoint state

very often by moving copies of needed application state to

nearest neighbor nodes (they only draw power when in use, this

would have minimal energy implications).

Reproducible // Stochas. Sim

Results presented at an SC Workshop

in conjunction with NIST

10/10/2016

9

17

 Easier if they fit with the independent bag-of-work

paradigm.

 Such stochastic simulations can easily tolerate a loss of

jobs, if hopefully enough jobs finish for the final

statistics..

 Must use “independent” Parallel random streams.

 Statuses should be small and fast to store at Exascale

(Original MT – 6Kb status – MRG32K3a 6 integers)

 Should fit with different distributed computing

platforms

 Using regular processors

 Using hardware accelerators (GP-GPUs, Intel Phi…)

Approach : Application Driven

Parallel Stochastic Simulations

A method: Repeatability of parallel

stochastic simulations
Remember that a stochastic program is « deterministic » if we use
(initialize and parallelize) correctly the pseudo-random number.

1. A process or object oriented approach has to be chosen for
every stochastic objects which has its own random stream.

2. Select a modern and statistically sound generators according
to the most stringent testing battery (TestU01);

3. Select a fine parallelization technique adapted to the
selected generator,

4. The simulation must first be designed as a sequential program
which uses a parallel design. The sequential execution – with a
compiler disabling of “out of order” execution will be the
reference to compare parallel and sequential execution at small
scales on the same node.

5. Externalize, sort or give IDs to the results for reduction in
order to keep the execution order or use compensated
algorithms

[Hill 2015] : Hill D., “Parallel Random Numbers, Simulation, Science and reproducibility”.
IEEE/AIP - Computing in Science and Engineering, vol. 17, no 4, 2015, pp. 66-71.

10/10/2016

10

An object-oriented approach?

A system being of collection of interacting “objects”
(dictionary definition) – a simulation will make all
those objects evolve during the simulation time with
a precise modeling goal.

Assign an « independent » random stream to each
stochastic object of the simulation.

Each object (for instance a particle) must have its
own reproducible random stream.

An object could also encapsulate a random variate
used at some points of the simulation. Every
random variate could also have their own random
stream.

[Hill 1996] : HILL D., “Object-oriented Analysis and Simulation”,
Addison-Wesley, 1996, 291 p.

Back to basics for stochastic simulations

Repeatable Par.Rand.Num.Generators

Quick check with some top PRNGs used with
different execution context (hardware,
operating systems, compilers…

1. Use exactly the same inputs

2. Execute on various environments

3. Compare our outputs
with author’s outputs
(from publications
or given files)

10/10/2016

11

Reproducing results – portability 1/4

 Errors found:
• for different hardware,

• different operating systems,

• different compilers.

Reproducing results – portability 2/4

Errors found:
• Different Compilers (2 cases)

• With Identical Hardware (2 cases)

• With different operating Systems (2 cases)

10/10/2016

12

Reproducing results – portability 3/4

Errors found :
Problems Encountered With 32 And 64 Bits Architecture For

The Same Compiler (lcc compiler 32 bits – ok for 64 bits)

Reproducing results – portability 4/4

Errors found :
when comparing between real and virtual machines
a “Real” Core 2 Duo T7100 and a “Virtual Machine” (Virtual
Box on top of Windows 7 with Intel(R) Core™ i7-4800MQ)

 Will this impact Docker for Windows since it works on top
of virtual Box ?

10/10/2016

13

25

*Let’s « see » the potential
impact of the generator quality…

Two results of the same simulation (sequential) – PDE Harmonic
solution computed with Brownian movements.
On the left the image is obtained with Linux rand (which is already far
better than the old std UNIX rand on 15bits)
On the right – same simulation with Mastumoto Mersenne Twister
(1997 version) – right solution elipsoid with a circular section.

10/10/2016

14

*There is no perfect Generator…
Ex: First Mersenne Twister : a known default…

27

Between 1997 and 2002 : very long recovery of
zero-excess initial state for MT19237
(700 000 draws…)

28

Some top PRNGs (Pseudo Random Number
Generators)Only Green PRNG are recommended:

LCG (Linear Congruential Generator) - xi = (a*xi-1 + c) mod m
forget them for Scientific Computing see [L’Ecuyer 2010]

LCGPM (Linear Congruential Generator with Prime Modulus –
could be Mersenne or Sophie Germain primes)

MRG (Multiple Recursive Generator)
xi = (a1*xi-1 + a2*xi-2 + … + ak*xi-k + c) mod m – with k>1

 (Ex: MRG32k3a & MRG32kp – by L’Ecuyer and Panneton)

LFG (Lagged Fibonacci Generator)
xi = xi-p xi-q

MLFG (Multiple Lagged Fibonacci Generator) – Non linear
by Michael Mascagni MLFG 6331_64

L & GFSR (Generalised FeedBack Shift Register…) Mod 2

 Mersenne Twisters – by Matsumoto, Nishimura, Saito (MT,
SFMT, MTGP, TinyMT) – WELLs Matsumoto, L’Ecuyer, Panneton

See [Hill et al 2013] for advices including hardware accelerators

10/10/2016

15

29

*The Central Server (CS) technique (avoid for flexible reproducibility)

*The Leap Frog (LF) technique. Means partitioning a sequence {xi, i=0,
1, …} into ‘n’ sub-sequences, the jth sub-sequence is {xkn+j-1, k=0, 1, …} -
like a deck of cards dealt to card players.

*The Sequence Splitting (SS) – or blocking or regular/fixed spacing
technique. Means partitioning a sequence {xi, i=0, 1, …,} into ‘n’ sub-
sequences, the jth sub-sequence is {xk+(j-1)m, k=0, …, m1}
where m is the length of each sub-sequence

*Jump Ahead technique (can be used for both Leap Frog or
Sequence splitting)

*The Cycle Division or Jump ahead approach. Analytical computing of
the generator state in advance after a huge number of cycles
(generations)

*The Indexed Sequences (IS) - or random spacing. Means that the
generator is initialized with ‘n’ different seeds/statuses

Quick survey of random streams parallelization
(1) Using the same generator

Quick survey of random streams parallelization
(2) Using different generators:

Parameterization:

The same type of generator is used with different parameters for each
processor meaning that we produce different generators

In the case of linear congruential generators (LCG), this can rapidly
lead to poor results even when the parameters are very carefully
checked. (Ex: Mascagni and Chi proposed that the modulus be
Mersenne or Sophie Germain prime numbers)

Explicit Inversive Congruential generator (EICG) with prime modulus
has some very compelling properties for parallelizing via
parameterizing.

A recent paper describes an implementation of parallel random
number sequences by varying a set of different parameters instead of
splitting a single random sequence
(Chi and Cao 2010).

In 2000 Matsumoto et al proposed a dynamic creation technique30

10/10/2016

16

Application : Reproducible HPC for

Muonic Tomography - billions of threads…

Labex

Clervolc

Tomuvol

project with

C. Cârloganu

P. Schweitzer

thesis for HPC

2D Tomographic rendering

10/10/2016

17

Optimization for a single « hybrid » node

(Intel E52650 & Xeon Phi 7120P)

Parallel stochastic simulation of muonic tomography

Parallel programming model using p-threads

On stochastic object for each Muon

Multiple streams using MRG32k3a1

A billion threads handled by a single node (queue & pooling)

Compiling flags set to maximum reproducibility

(1) P. L'Ecuyer, R. Simard, E. J. Chen, and W. D. Kelton, ``An Objected-Oriented

Random-Number Package with Many Long Streams and Substreams'',

Operations Research, Vol. 50, no. 6 (2002), pp. 1073-1075.

Bit for bit reproducibility

Do not expect bit for bit reproducibility when working on Intel Phi

vs. regular Intel processors1.

We observed bit for bit reproducibility in single precision but not

in double precision (and with the expected compiler flags)

The relative difference between processors (E5 vs Phi) in double

precision were analyzed and are shown below:

(1) Run-to-Run Reproducibility of Floating-Point Calculations for Applications on

Intel® Xeon Phi™ Coprocessors (and Intel® Xeon® Processors) – by Martin Cordel

https://software.intel.com/en-us/articles/run-to-run-reproducibility-of-floating-

point-calculations-for-applications-on-intel-xeon

https://software.intel.com/en-us/articles/run-to-run-reproducibility-of-floating-point-calculations-for-applications-on-intel-xeon

10/10/2016

18

Relative difference (Phi vs E5)

With regular compiler flags – no hope of reproducibility

With a careful use of compiler flage the results on the two

architectures are of the same order,

Both of them have the same sign and the same exponent (even if some

exceptions would be theoretically possible, they would be very rare).

The only bits that can differ between these results are the least

significant bits of the significand.

For a given exponent e, and a result r1 = m × 2e, the closest value

greater than r1 is r2 = (m + εd) × 2e, where εd is the value of the least

significant bit of the significand: εd = 2-52 ≈ 2.22 10-16.

Intel Compiler flags:

“-fp-model precise -fp-model source -fimf-precision=high -no-fma”

for the compilation on the Xeon Phi

“-fp-model precise -fp-model source -fimf-precision=high”

for the compilation on the Xeon CPU.

Conclusion

Repeatability achieved on identical execution platforms

Numerical differences reduced between classical Xeon and
Intel Xeon Phi.

Numerical Reproducibility is possible for Parallel Stochastic
applications with independent computing on homogeneous
nodes.

This approach can be used for low reliability
supercomputers (with current MTTF below 1 day)

Key elements of a method have been presented to produced
numerically reproducible results for parallel stochastic
simulations comparable with a sequential implementation
(before scaling on Petaflopic or future Exascale systems)

Numerical replications is very important for scientists in
many sensitive areas, finance, nuclear safety, medicine…

10/10/2016

19

37

Perspectives

Simulation of parallel independent processes can be now
considered as “easy”,

BUT: simulating time-dependent entities or interacting
entities, with numerical reproducibility across interactions
and cross various heterogeneous communicating nodes will
be tough.

Software simulation of co-routines within the simulation
application and synchronous communications can be required
in addition to the mandatory assignment of a different
random streams to each stochastic object.

Numerical replication is at least very important for
debugging.

Get prepared with Fault Injection frameworks
(like SEFI – Los Alamos National Library, USA)

38

Questions?

10/10/2016

20

Top Future nodes (US CORAL program)

•Will be Hybrid with a shared memory between CPUs –

GPUs and FPGAs (currently available)

•Will provide large memories

•Will provide fast storage (Ultra Fast SSD – PCM memories

etc.)

•Data centric with computing even at memory and

network level.

•Probabilistic approaches (“à la Watson”)

Reproducibility for :

•Quantum accelerators (D-Wave, IBM,…) ?

•Neuromorphic chips (for deep learning) ?

10/10/2016

21

41

Spring 2016 Perspectives
Reproducibility Seminar for Computer Scientists in Auvergne

with the input of Philosophers and Lawyers

Reproducible Research

Numerical Reproducibility

Epistemology – how do we build knowledge

Ethics and more…

Définitions:

Accuracy :

nombre de chiffres corrects sur un calcul

Precision :

nombres de bits utilisés pour le calcul

Can have the same errors : but with reproducibility

