Reproducible High Performance computing for stochastic models and simulations

A method: Repeatability of parallel stochastic simulations

Remember that a stochastic program is « deterministic » if we use (initialize and parallelize) correctly the pseudo-random number.

- A process or object oriented approach has to be chosen for every stochastic objects which has its own random stream.
- 2. Select a <u>modern and statistically sound generators</u> according to the most stringent testing battery (TestU01);
- 3. Select a <u>fine parallelization technique adapted to the</u> <u>selected generator</u>,
- 4. The simulation must first be designed as <u>a sequential program</u> which uses a parallel design. The sequential execution - with a compiler disabling of "out of order" execution will be the reference to compare parallel and sequential execution at small scales on the same node.
- 5. Externalize, sort or <u>give IDs to the results for reduction</u> in order to keep the execution order or use compensated algorithms

[Hill 2015] : Hill D., "Parallel Random Numbers, Simulation, Science and reproducibility". IEEE/AIP - Computing in Science and Engineering, vol. 17, no 4, 2015, pp. 66-71.

proc	lug	cir	Ŋġ	re	sı	lts	-	P O	rta	bili	ty	1
Trrora f		. d.										
TIOLS I	our	id:										
for diff	fere	nt h	ard	vare								
difforo	nt o	nor	atio		ton	~						
• untere		pera	atin	g sys	sten	ns,						
 differe 	nt c	om	oiler	s.								
		in the	0. 1. 1	20	THE R. LANS.	the state state of	÷	1000 A 1000		1002201011		
de 3: Testing of	reprodu	cibility	for 7 di	fferent	PRNG	(MT1993) Catel E5	7 with	2 versions	TinyMT	with 2 versi	ous, M	RG32
de 3: Testing of 1.512, MLFG64 Opteron, C	reprodu) perfor ore i7-4	cibility med-ou 1800MC	for 7 di 5 diffe)) with	ifferent rent pro differen	PRNG cessor t comp	s (MT1993 s (Intel E5- ilers (gec. i	7 with 2650v.	2 versions 2. Intel E5 . open64.	, TinyMT -2687W, C MinGW, C	with 2 versi ore 2 Duo 1 vgwin) wer	ous, M 7100, e tester	RG32 AMD
le 3: Testing of 1.512, MLFG64 Opteron, C	reprodu i) perfor ore i7-4	cibility med-ou 1800MQ	for 7 di 5 diffe)) with	ifferent rent pro differen	PRNG cessor t comp	s (MT1993 s (Intel E5- ilers (gec, i	7 with 2650v. icc, lee	2 versions 2, Intel E5 2, open64,	, TinyMT -2687W, C MinGW, C	with 2 versi ore 2 Duo 1 ygwin) wer	ous, M 7100, e tested	RG33 AME I.
lle 3: Testing of L512, MLFG64 Opteron, C Generator	reprodu () perfor ore i7-4 E5-26	cibility med ou 1800MC 550v2	for 7 di 5 diffe 2) with E5-2	ifferent rent pro differen 687W	PRNG cessor t comp Cor 1	s (MT1993 s (lutel E5- ilers (goc, i re 2 Duo [7100	7 with 2650v cc, lee	2 versions 2, Intel E5 , open64, AMD pteron 4) 6272	, TinyMT - -2687W, C MinGW, C	with 2 versi ore 2 Duo 1 ygwin) wer ore 17-480	ous, M (7100, e testec (MQ	RG3. AMI I.
de 3: Testing of 1.512, MLFG64 Opteron, C Generator	reprodu () perfor ore i7-4 E5-26 gcc	cibility med-ou i800MC i50v2 icc	for 7 di 5 diffe 2) with E5-2 gcc	ifferent rent pro differen 687W lee	PRNG cessor t comp Cor 1 gcc	s (MT1993 s (Intel E5- ilers (gec. i re 2 Duo 17100 open64	7 with 2650v, ec, lee J Oj (TM gec	2 versions 2, Intel E5 2, open64, AMD pteron 4) 6272 open64	, TinyMT -2687W, C MinGW, C Cygwin	with 2 versi ore 2 Duo 1 ygwin) wer ore 17-480 MinGW	ous, M (7100, e tester PMQ	RG3: AMI I.
de 3: Testing of L512, MLFG64 Opteron, C Generator	reprodu () perfor ore i7-4 E5-26 gcc	cibility med ou i800MC i50v2 fee	for 7 di 5 diffe 2) with E5-2 gcc	ifferent rent pro differen 687W kcc	PRNG cessor t comp Cor 1 gec	s (MT1993 s (Intel E5- ilers (gec. i re 2 Duo 17100 open64	7 with 2650v. cc, lee J Oj (TM gec	2 versions 2, Intel E5 2, open64, 4, open64, 4) 6272 open64	, TinyMT - -2687W, C MinGW, C C Cygwin	with 2 versi ore 2 Duo 1 ygwin) wer 'ore 17-4800 MinGW	ous, M (7100, e tester (MQ) k	RG3. AMI I. cc
de 3: Testing of L512, MLFG64 Opteron, C Generator MT19937	reprodu () perfor ore i7-4 E5-26 gcc Yes	cibility med-ou i800MQ i50v2 icc Yes	for 7 di 5 diffe)) with E5-2 gcc Yes	dferent rent pro differen 687W lcc Yes	PRNG cessor t comp Cor 1 gec Yes	s (MT1993 s (Intel E5- ilers (goc. i re 2 Duo 17100 open64 Yes	7 with 2650v. cc, lee (D) (D) gec Yes	2 versions 2, Intel E5 2, open64, 4 4 4 4 4 4 4 4 4 5 6 272 0pen64 7 4 5 5 7 5 5 7 5 7 5 7 5 7 5 7 5 7 7 7 7	, TinyMT (-2687W, C MinGW, C C Cygwin Yes	with 2 versi ore 2 Duo 7 ygwin) wer Core 17-4800 MinGW Yes	ous, M (7100, e tester (MQ 1 k Yes	RG3. AMI I. CC IC6 Ye
de 3: Testing of 1.512, MLFG64 Opteron, C Generator MT19937 MT19937 64	reprodu) perfor ore i7-4 E5-26 gcc Yes Yes	cibility med ou i800MC i50v2 icc Yes Yes	for 7 di 5 diffe 2) with E5-2 gcc Yes Yes	fferent rent pro differen 687W kcc Yes Yes	PRNG cessor t comp Cor 1 gcc Yes Yes	s (MT 1993 s (Intel E5- ilers (gcc. i re 2 Duo 17100 open64 Yes Yes	7 with 2650v. cc, lec J OJ (TM gec Yes Yes	2 versions 2, Intel E5 2, open64, VMD pteron (1) 6272 open64 Yes Yes	, TinyMT (-2687W, C MinGW, C C Cygwin Yes Yes	with 2 versi ore 2 Duo 1 ygwin) wer fore 17-4800 MinGW Yes Yes	ous, M (7100, e tester OMQ le Yes Yes	RG3: AMI I. I. I. I. I. I. I. I. I. I. I. I. I.
de 3: Testing of 1.512, MLFG64 Opteron, C Generator <u>MT19937</u> <u>MT19937</u> 64 TinyMT_32	reprodu) perfor ore i7-4 E5-26 gcc Yes Yes Yes	eibility med ou 800MG 850v2 lee Yes Yes Yes	for 7 di 5 diffe)) with E5-2 gcc Yes Yes Yes	fferent rent pro differen 687W lec Yes Yes Yes	PRNG cessor t comp Cor l gcc Yes Yes Yes	s (MT 1993 s (Intel E5- ilers (gcc. i re 2 Duo 17100 open64 Yes Yes NO	7 with 2650v, cc, lec J Ol (ID gec Yes Yes Yes	2 versions 2, Intel ES 2, open64, AMD pteron d) 6272 open64 Yes Yes Yes	TinyMT -2687W, C MinGW, C Cygwin Yes Yes Yes	with 2 versi ore 2 Duo 1 ygwin) wer fore 17-4800 MinGW Yes Yes Yes	ous, M (7100, e tester MQ le Yes Yes Yes	RG3 AMI I I I I I I I I I I I I I I I I I I
de 3: Testing of L\$12, MLFG64 Opteron, C Generator MT19937 MT19937 InyMT_32 TinyMT_64	reprodu) perfor ore i7-4 E5-26 gcc Yes Yes Yes Yes Yes	cibility med ou i800MC i80v2 i60v2 icc Yes Yes Yes Yes	for 7 di 15 diffe () with E5-2 gec Yes Yes Yes Yes	fferent rent pro differen 687W kcc Yes Yes Yes Yes	PRNG cessor f comp Con l gec Yes Yes Yes Yes	s (MT1993 s (Intel E5- ilers (gec. i re 2 Duo 17100 open64 Yes Yes NO Yes	7 with 2650v, cc, lec 9 (D) gcc Yes Yes Yes Yes	2 versions 2 Intel E5 2 open64. AMD pteron d) 6272 open64 Yes Yes Yes Yes	, TanyMT + -2687W, C MinGW, C Cygwin Yes Yes Yes Yes	with 2 versi ore 2 Duo 1 ygwin) wer ore 17-480 MinGW Yes Yes Yes No 9	ous, M (7100, e tester MQ I k Yes Yes Yes NO	RG3: AMI I. I. I. I. I. I. I. I. I. I. I. I. I.
le 3: Testing of L\$12, MLFG64 Opteron, C Generator MT19937 MT19937 64 TinyMT_32 TinyMT_64 MRG32K3a	reprodu () perfor ore i7-4 E5-26 gcc Yes Yes Yes Yes Yes Yes	cibility med ou i800MG i800MG i8002 i60 Yes Yes Yes Yes Yes Yes Yes	for 7 di 5 diffe)) with E5-2 gec Yes Yes Yes Yes Yes	fferent rent pro differen 687W kcc Yes Yes Yes Yes Yes Yes	PRNG cessor t comp Con 1 gec Yes Yes Yes Yes Yes Yes	s (MT1993 s (Intel E5- ders (goc. i re 2 Duo (7100 open64 Yes Yes Yes Yes	7 with 2650v, cc, lee 9 (TM gec Yes Yes Yes Yes Yes	2 versions 2, Intel ES 3, open64, 4MD pteron 4) 6272 open64 Yes Yes Yes Yes Yes Yes	, TanyMT + -2687W, C MinGW, C Cygwin Yes Yes Yes Yes Yes Yes	with 2 versi ore 2 Duo 1 ygwin) wer ore 17-4800 MinGW Yes Yes Yes Yes	ous, M (7100, e tester MQ I k Yes Yes Yes NO Yes	RG3: AME I. Vei Yei Yei Yei
de 3: Testing of L\$12, MLFG64 Opteron, C Generator MT19937 MT19937 64 TinyMT_32 TinyMT_64 MRG32K3a WELL\$12a	reprodu) perfor ore i7-4 E5-26 gcc Yes Yes Yes Yes Yes Yes Yes	isooMi isoo isoo	for 7 di 5 diffe)) with E5-2 gec Yes Yes Yes Yes Yes Yes Yes	fferent rent pro differen 687W kcc Yes Yes Yes Yes Yes Yes Yes	PRNG cessor t comp l gec Yes Yes Yes Yes Yes Yes Yes	s (MT1993 s (Intel E5- iders (gcc, i re 2 Duo 17100 open64 Yes Yes Yes Yes Yes Yes	7 with 2650v. cc, lee 9 (TM gec Yes Yes Yes Yes Yes Yes Yes	2 versions 2, Intel ES open64. MD pteron d) 6272 open64 Yes Yes Yes Yes Yes Yes Yes	, TinyMT + -2687W, C MinGW, C Cygwin Yes Yes Yes Yes Yes Yes Yes	with 2 versi ore 2 Duo 1 ygwin) wer 'ore 17-480 MinGW Yes Yes Yes Yes Yes Yes Yes	ous, M (7100, e tester MQ I k Yes Yes Yes Yes Yes Yes	RG33 AMII I I Ver Yer Yer Yer Yer

Rep	roducing result	ts - portabilit	y 3/4
• Erro Probl The S	e <mark>rs found :</mark> ems Encountered With 32 Same Compiler (lcc comp	2 And 64 Bits Architect <mark>iler 32 bits</mark> - ok for 64	ture For bits)
Tal	ble 6: Results for TinyMT_64 running Windows 7	PRNG on Core i7-4800M 7 with <u>lc</u> 32 bits	1Q
Tal	ble 6: Results for TinyMT_64 running Windows 7 Expected results CHECK64.OUT.TXT	PRNG on Core i7-4800N 7 with <u>lc</u> 32 bits Results obtained with <u>lc</u> 32 bits compiler	AQ
Tal	ble 6: Results for TinyMT_64 running Windows 7 Expected results CHECK64.OUT.TXT 0.125567123229521	PRNG on Core i7-4800N 7 with <u>lc</u> 32 bits Results obtained with <u>lc</u> 32 bits compiler 0.514472427354387	4Q
Tal	ble 6: Results for TinyMT_64 running Windows 7 Expected results CHECK64.OUT.TXT 0.125567123229521 1.437679237017648	PRNG on Core i7-4800N 7 with <u>lc</u> 32 bits Results obtained with <u>lc</u> 32 bits compiler 0.514472427354387 1.386730269781771	4Q
Tal	ble 6: Results for TinyMT_64 running Windows 7 Expected results CHECK64.OUT.TXT 0.125567123229521 1.437679237017648 0.231189305675805	PRNG on Core i7-4800N 7 with <u>lc</u> 32 bits Results obtained with <u>lc</u> 32 bits compiler 0.514472427354387 1.386730269781771 0.112526841009551	1Q

Quick survey of random streams parallelization (2) Using different generators:

Parameterization:

The same type of generator is used with different parameters for each processor meaning that we produce different generators

- In the case of linear congruential generators (LCG), this can rapidly lead to poor results even when the parameters are very carefully checked. (Ex: Mascagni and Chi proposed that the modulus be Mersenne or Sophie Germain prime numbers)
- Explicit Inversive Congruential generator (EICG) with prime modulus has some very compelling properties for parallelizing via parameterizing.
- A recent paper describes an implementation of parallel random number sequences by varying a set of different parameters instead of splitting a single random sequence (Chi and Cao 2010).
- In 2000 Matsumoto et al proposed a dynamic creation technique

Optimization for a single « hybrid » node (Intel E52650 & Xeon Phi 7120P)

Parallel stochastic simulation of muonic tomography

- Parallel programming model using p-threads
- On stochastic object for each Muon
- Multiple streams using MRG32k3a¹
- A billion threads handled by a single node (queue & pooling)
- Compiling flags set to maximum reproducibility

Table 3: Performance of a billion event simulation when parallelized on 1 Phi, 1 CPU, 2 CPUs

	Intel Xeon Phi 7120P	Intel Xeon E5-2650v2	2x Intel Xeon E5-2650v2
Time	48 h 49 min	36 h 32 min	18 h 17 min
Speedup	1	1.34	2.67

(1) P. L'Ecuyer, R. Simard, E. J. Chen, and W. D. Kelton, ``An Objected-Oriented Random-Number Package with Many Long Streams and Substreams", Operations Research, Vol. 50, no. 6 (2002), pp. 1073-1075.

Bit for bit reproducibility

Do not expect bit for bit reproducibility when working on Intel Phi vs. regular Intel processors¹.

- •We observed bit for bit reproducibility in single precision but not in double precision (and with the expected compiler flags)
- The relative difference between processors (E5 vs Phi) in double precision were analyzed and are shown below:

Difference ↓ \ Result →	Position X	Position Z	Direction X	Direction Y	Direction Z
0 bit: bit for bit reproducibility	4922	4934	4896	4975	4913
1 bit: $1.11E-16 \le \Delta \le 2.22E-16$	25	21	14	5	18
2 bits: $2.22E-16 \le \Delta \le 4.44E-16$	21	18	52	4	31
3 bits: $4.44E-16 \le \Delta \le 8.88E-16$	15	12	23	6	12
4 bits: $8.88E-16 \le \Delta \le 1.78E-15$	10	7	5	4	10
≥ 5 bits: 1.78E-15 ≤ Δ < 2.25E-11	7	8	10	6	16

(1) Run-to-Run Reproducibility of Floating-Point Calculations for Applications on Intel® Xeon Phi[™] Coprocessors (and Intel® Xeon® Processors) - by Martin Cordel <u>https://software.intel.com/en-us/articles/run-to-run-reproducibility-of-floating-point-calculations-for-applications-on-intel-xeon</u>

Spring 2016 Perspectives

Reproducibility Seminar for Computer Scientists in Auvergne with the input of Philosophers and Lawyers

- ✓ Reproducible Research
- ✓ Numerical Reproducibility
- Epistemology how do we build knowledge
- ✓ Ethics and more...

Définitions: Accuracy : nombre de chiffres corrects sur un calcul Precision : nombres de bits utilisés pour le calcul Can have the same errors : but with reproducibility