

The quest for CP violation in the leptonic sector with the T2K experiment

Claudio Giganti

Soutenance HDR - 24/06/2016

My scientific activities

SciBooNE: experiment at Fermilab to measure neutrino cross-sections T2K: Long baseline neutrino oscillation experiment in Japan LAGUNA/LBNO/WA105: design study and R&D for next generation long baseline experiments DarkSIDE: Liquid Argon detectors for Direct Dark Matter detection

LAGUNA/ LBNO/WA105

DarkSIDE

Tutoring

T2K

2011-2014 PhD co-supervisor Javier Caravaca (IFAE) 2013-2016 PhD supervisor Pierre Bartet From 2015 PhD co-supervisor Simon Bienstock + 1 M2 stage and L3 stages

DarkSIDE From 2015 MI+M2+PhD(?) Anyssa Navrer-Agasson +1 L3 and 1 MI stage LAGUNA/ LBNO/WA105

DarkSIDE

Responsibilities

Main results (presented in this HDR) Measurement of the beam v_e component Phys. Rev. D 89, 092003 Electron neutrino CC cross-section Phys. Rev. Lett. 113, 241803 Search for sterile neutrinos at ND280 Phys. Rev. D 91, 051102(R) ND280 v_{μ} selection to increase angular acceptance and measurement of v cross-sections arXiv:1602.03652, submitted to PRD T2K joint v- \bar{v} oscillation analysis (not published yet, will be presented at Neutrino2016 in two weeks)

Plan

(Quick) introduction to neutrino oscillations Neutrino oscillations in ~2010 θ_{13} and CP violation The T2K experiment ND280 results Measurements with CC v_{μ} selections Measurements with CC v_e selections T2K oscillation analysis Next steps

Neutrino oscillations in a nutshell

- First introduced by Bruno Pontecorvo in 1957
- Neutrinos are produced in flavor eigenstates v_e, v_µ, v_T that are linear combination of mass eigenstates v₁, v₂, v₃
- Neutrinos propagate as mass eigenstates
- At the detection a flavor eigenstate is detected → it can be different from the one that was produced

Neutrino oscillation implies massive neutrinos

3 flavor neutrino mixing: PMNS matrix

How to measure θ_{13}

Reactors (DChooz, RENO, Daya Bay)

✓ Disappearance of $\overline{\nu}_e P(\overline{\nu}_e \rightarrow \overline{\nu}_e)$ ✓ $\overline{\nu}_e$ produced in nuclear reactors ✓ Neutrino energy few MeV ✓ Distance L ~ I km

✓ Signature: disappearance of the $\overline{\nu}_{e}$ produced in the reactor → depends on θ_{13}

 $P(\bar{\psi}_{e} \Rightarrow \bar{\psi}_{e}) \equiv 1 = \sin^{2}2\theta_{13}\sin^{2}\Delta_{13}$ $= \cos^{4}\theta_{13}\sin^{2}2\theta_{12}\sin^{2}\Delta_{12}$ Simple dependence on θ_{13} (and Δm_{31}^{2}

Accelerators (T2K, Nova):

✓ Appearance experiment: $P(v_{\mu} \rightarrow v_{e})$ ✓ v_{μ} neutrino beam ✓ Neutrino energy ~1 GeV ✓ Distance L >~ 300 km ✓ Signature: v_{e} appearance in v_{μ} beam ✓ Degeneracy of θ_{13} , δ_{CP} , sign of Δm^{2}

1st order
$$\rightarrow \theta_{13}$$

 $P(\nu_{\mu} \rightarrow \nu_{e}) \sim \sin^{2} \theta_{23} \frac{\sin^{2} 2\theta_{13}}{(\hat{A} - 1)^{2}} \sin^{2}((\hat{A} - 1)\Delta)$
 $P(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e})^{2} = 1 - \sin^{2} 2\theta_{13} \sin^{2}(\hat{A} - 1)^{2}$
 $+ \alpha \frac{\sqrt{CP}}{\hat{A}(1 - \hat{A})} \sin(\Delta) \sin(\hat{A}\Delta) \sin((1 - 4\hat{A})\Delta) \sin(2\theta)$
 $+ \alpha \frac{8I_{CP}}{\hat{A}(1 - \hat{A})} \cos(\Delta) \sin(\hat{A}\Delta) \sin((1 - \hat{A})\Delta)$
 $A^{2} \frac{\cos^{2} \theta_{23} \sin^{2} \theta_{12}}{\hat{A}^{2}} \sin^{2}(\hat{A}\Delta)$
 $A \text{ depends on the sign of } \Delta m^{2}$
 $\Delta = \Delta m_{32}^{2} L/4E$
 $\alpha = |\Delta m_{32}^{2}|/|\Delta m_{21}^{2}| \sim 1/30$

3 flavor neutrino mixing today

Atmospheric (SK, K2K, Minos, T2K) $\rightarrow \theta_{23}, \Delta m_{32}$

T2K experiment

High intensity ~600 MeV v_{μ} beam produced at J-PARC (Tokai, Japan)

- Neutrinos detected at the Near Detector (ND280) and at the Far Detector (Super-Kamiokande) 295 km from J-PARC
- Main physics goals:
- **Observation of** v_e appearance \rightarrow determine θ_{13} and δ_{CP}

Precise measurement of v_{μ} disappearance $\rightarrow \theta_{23}$ and Δm^2_{32} Super-Kamiokande: 22.5 kt fiducial volume water Cherenkov detector

1200yearold 3 temple

Olo emple J-PARC Facility (KEK/JAEA)

Near

Detector

View to North

Photo: January 2008

Linac

Neutrino Beam to Kamioka

FFF

Construction 2001~2009

Pacific

hrotron

Design Intensity

750kW

Ocedi

T2K neutrino beamline

- 30 GeV proton beam from J-PARC Main Ring extracted onto a graphite target
- p+C interactions producing hadrons (pions and kaons)
- Hadrons are focused and selected in charge by 3 electromagnetic horns
- \triangleright ν_{μ} mainly produced by pion decay $\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$
- Solution Changing the sense of the current in the magnetic horns π^2 can be focused and a beam of $\overline{\nu}_{\mu}$ can be produced
- I will often talk about POT (proton-on-target) → equivalent of luminosity for collider experiments

Off-axis beam

- T2K uses an off-axis technique (detectors at 2.5° from the center of the beam)
 - Increase the intensity of the beam at the desired $L/E \rightarrow$ maximize the oscillation probability

Physics goals

The T2K experiment was designed to have Super-Kamiokande at the maximum of the oscillation probability

- ldeal place to look for v_e appearance (mainly driven by θ_{13}) and v_{μ} disappearance (θ_{23} and Δm^2_{32})
- If negative pions are focused the beam is predominantly composed of $\overline{\nu}$ and this maximize the δ_{CP} sensitivity

Why anti-neutrinos

Why antime atrinos

In case of T2K where the baseline is short we have:

 δ_{CP} effect ±30% MH effect ~10%

0.02

Data taking

T2K started the data taking in 2010

Collected proton on target so far ~15x10²⁰ POT

Reached steady beam power of 410 kW (nominal beam power would be 750 kW)

Equal amount of ν and $\overline{\nu}$

Today's analyses 6.9x10²⁰ POT in ν 4.0x10²⁰ POT in $\overline{\nu}$

Will be shown at Neutrino 7.0x10²⁰ POT in ν 7.5x10²⁰ POT in $\overline{\nu}$

- Detector installed inside the UA1/NOMAD magnet (0.2 T magnetic field)
- A detector optimized to measure π^0 (P0D)
 - A tracker system composed by:

- 2 Fine Grained Detectors (target for v interactions). FGD1 is pure scintillator, FGD2 has water layers interleaved with scintillator
- 3 Time Projection Chambers: reconstruct momentum and charge of particles, PID based on measurement of ionization
- Electromagnetic calorimeter to distinguish tracks from showers

Super-Kamiokande

50 kton water Cherenkov detector (22.5 kton FV)
 ~11000 20" PMT inner detector (~2000 8" PMT outer detector used as veto) → 40% photocathode coverage

~1000 meters underground in the Kamioka mine

Operated since 1996 (upgraded for T2K)

Reconstruct vertex position, charged track direction and energy

SK PID capabilities

Electron Ring

Different shape of Cherenkov rings allow to clearly distinguish e-like rings from µlike rings

Muon Ring

PID discrimination power > 99%

The Cerenkov radiation from a muon produced by a muon neutrino event yields a well defined circular ring in the photomultiplier detector bank.

> The Cerenkov radiation from the electron shower produced by an electron neutrino event produces multiple cones and therefore a diffuse ring in the detector array.

T2K oscillation analysis chain

Flux prediction:
 ✓ Proton beam stability
 ✓ Hadron production (NA61 and others external data)

ND280 measurements:
 ✓ v_µ selection to constrain flux and cross-sections
 ✓ Measure v_e beam component

Prediction at the Far Detector: Combine flux, x-section and ND280 to predict the expected events at SK

Extract oscillation parameters!!

<u>Neutrino interactions:</u> Interaction models External cross-section data

 \checkmark

 \checkmark

 $\frac{\text{Super-Kamiokande measurements:}}{\text{Select CC } \nu_{\mu} \text{ and } \nu_{e} \text{ candidates after}}$ the oscillations

Flux prediction

- In any long baseline experiment the main uncertainty on the flux prediction comes from the hadron production cross-section (in T2K case p+C $\rightarrow \pi$,K,..)
- T2K uses dedicated experiments at CERN (NA61) to predict fluxes in both, neutrino and antineutrino mode

The uncertainties on the fluxes are at the 10% level when NA61 data are used

Cross-section model

ch constrain flux

ND280 analyses

- The main use of ND280 is to constrain flux and crosssection uncertainties in the T2K oscillation analyses
 - Neutrino interactions are selected in the FGD and the charged particles produced are tracked in the TPC
- The most energetic forward going negative track is selected as the lepton candidate

- Positive track if we are taking data in \overline{v} mode
- The inclusive sample is sub-divided according to the number of observed pions (0π , 1π , $N\pi$)

25

Efficiency

Systematic reduction

ults from T2K - Neutrino2014

10

 $\sigma_{
u_e}/\sigma_{
u_\mu},\,\sigma_{ar
u_e}/\sigma_{ar
u_\mu}$

2.9

6.8

NC 1γ Cross-section

NC Other Cross-section

Total Systematic Error

06/01/2011

0.0

0.0

0.7

5.5

ισται

2.6

1.4

0.2

5.7

1.5

2.7

0.3

6.8

3.1

1.2

0.1

5.9

0.0

0.0

0.7

5.6

Chris Walter - Results fi

Angular acceptance

One of the main limitation of current ND280 analyses is that it only select forward-going muons

- In SK the acceptance is flat with respect to the lepton angle and events with backward leptons are also selected
- Currently we constraint the models in the forward region and we let the model constraint the backward region \rightarrow model dependent
- We developed a selection in ND280 to select backward tracks using the Time Of Flight between different ND280 detectors

Time Of Flight cuts

Increas

- Including this sel increase the low high angle efficie
- This selection wi the next round of analyses

Also being used to measure neutrino cross-sections → Pierre thesis

TZK

ND280 ve analyses

The main background to the appearance signal at SK is due to the intrinsic ve component in the beam

This is an unavoidable background in any neutrino beam (~1% of the total flux) where v_e are mainly produced from µ or K decays

- We measured this component, before oscillations, using the Particle Identification capabilities of ND280 tracker
 - The selected sample is also used to measure electron neutrino cross-section and to do sterile searches

fiT(

Particle Identification in ND280

TPC PID

$CC v_e$ selection

the present statist n unity showing not ad the observed be atic uncertainty f detector, flux and are larger at low r structed electron r the fit are shown i e parameters are o

d agreement with the expectaelectron component is reduced , compatible with the prior sys-0%. This reduction might point ulation does not properly reprobroduced in neutrino interactions nding the ND280 tracker Actic iti nainly high energy deep inelastic ch the π^0 multiplicity is not well on does not have a large in the Sa esented here because of the presversion sample used to evaluate

SUMMARY CONVE

on of ν_e CC interactions has been K off-axis near detector combinof the TPC and ECal. The com-

Entries/(100 MeV/c)

500 1000 1500 2000 2500 300 Momentum (

duce the amount of π^0 produced in neutrino interactions he PID capabilities in the materials surrounding the ND280 tracker regionation of these two of Those interactions are mainly high energy, deepK inelastican sample seattering events for which the π^0 multiplicity (is FOOTWOOD) misidentification p measured for which the π^0 multiplicity (is FOOTWOOD) misidentification p measured for which the π^0 multiplicity (is FOOTWOOD) misidentification p measured for which the π^0 multiplicity (is FOOTWOOD) misidentification p measured for which the π^0 multiplicity (is FOOTWOOD) misidentification p measured for which the because of the porsing from ν_e CC inter other background for ν_e CC inter this background.

of e^+e^- pairs $\operatorname{gaming}_{10}$ fr **CCOR**th outgoing particles To extract the beam likelihood fit is⁵ perform

le: Recons

AGE-HKE

SELEC

beam

11] 603

atum

F8844668

ed into th

points is the sta

FIG.

the e

tract

CCnd

The

tron

into

is div

interactions is predicted il summary, a selection of vasoc inderactions have EFIOFINE a using the T2K off-axis near detentation (MeV/c) é neutrino cross secti ing the PID capabilities of the TPC and EC Billation of these two detectors allows the selection of a selected at ND; a clean sample of electrons with a purity of 92% and the observed number HILON Misglentification probability smaller than For K with the grediction, pro FVThe selected sample is mainly composed to be this method. This meas wing from ν_e^{30} C interactions but a non negligible com-Entres from photon conversions in the FGD. This to further improve $\overline{\mathfrak{s}}_{26}$ in the analysis using a same to model the T Bae. irs coming from photon conversions in which of ν_e cross section 8ŧ 67 Both Butg. ng particles are reconstructed in the TPC. To extract $\frac{1}{2}$ beam ν_e component from the data This measurement is likelineed fit is performed. The expected number of ν_e intrinsic ν_{20} components ne same model used for the same model used for the proposed long ba Momentum (Mey/c) Scillation analyses Where the aperturn of fuses and a ming to for a the neutrino cross sections are evaluated by the \mathcal{L}_{μ} . In this paper it i ponent is small, it is po <u>samples</u> selected at ND280.

SUMMARY

EX.

v_e from μ v_e from K γ bkg (in FGD FVin the prediction, providing a direct confirmmation of γ bkg (out FGD FVin the prediction, providing a direct confirmmation of γ bkg (out FGD FVin the prediction, providing a direct confirmmation of γ bkg (out FGD FVin the prediction, providing a direct confirmmation of γ bkg (out FGD FVin the prediction, providing a direct confirmmation of γ bkg (out FGD FVin the prediction, providing a direct confirmmation of γ bkg (out FGD FVin the prediction, providing a direct confirmmation of γ bkg (out FGD FVin the prediction of the predicti

Momentum (Netto): In this paper it is shown that, although the Netto)

Control samples

- Most of the background comes from γ conversions producing an electron in the TPC \rightarrow additional vetoes cut $\rightarrow v_e$ purity ~65%
- $ightarrow \gamma
 ightarrow e^+e^-$ sample is used to constrain the background in the fit (particularly the background coming from outside the FGDs
 - The control sample is particularly helpful to constrain the low energy deficit that we observe in the ve sample

 $\mathbf{S}\mathbf{S}$

Search for sterile neutrinos

Several "anomalies" exist in the neutrino sector

- ▷ v_e appearance ($P_{\mu e}$) → LSND, MiniBooNE
- \triangleright v_e disappearance (P_{ee}) \rightarrow reactor and gallium anomalies
- No sign of v_µ disappearance (P_{µµ})→ limits from several experiments at short baseline
- All the three channels are related:

2P_{μe} ~ (1-P_{ee})(1-P_{μμ})

Tensions when all the channels are combined together \rightarrow some of them has to be wrong? We decided to concentrate on the v_e disappearance channel (reactor anomaly) use ND280 v_µ data to constrain the systematics (no v_µ disappearance)

Search for v_e disappearance @ND280

Results

Phys. Rev. D 91, 051102(R)

Joint oscillation analysis

- I will show results from the joint T2K oscillation analysis
 - This analysis combine SK selections for μ -like and e-like events in both ν and $\overline{\nu}$ mode \rightarrow 4 samples
- ND280 data are used to constraint flux and cross-section systematics
- Today I will show results from Run1-6
 - ▶ 6.9x10²⁰ POT in neutrino mode
 - ▶ 4.0x10²⁰ POT in anti-neutrino mode
- These results are not yet public! (please don't share!)
 - They will be released with 7.5x10²⁰ POT in anti-neutrino mode at Neutrino2016 (July 4th)

Reason for a joint analysis

SK e-like selection

ve Selection Cuts

- Fully Contained FV events
- # of rings = 1
- Ring is e-like
- E_{visible} > 100 MeV
- no Michel electrons
- $-0 < E_v < 1250 \text{ MeV}$
- new π^0 rejection

algorithm

Expected and observed events

6.9x10²⁰ POT in *ν*

 $\frac{4.0 \times 10^{20}}{\text{POT in } \nu}$

	1-Ri	ng e	1-Ring μ		
Category	ν mode	$\bar{\nu}$ mode	ν mode	$\bar{\nu}$ mode	
$ u_{\mu} ightarrow u_{e}$	21.0	0.5	0.3	0.01	
$\overline{ u}_{\mu} ightarrow \overline{ u}_{e}$	0.1	1.5	0.0	0.02	
$ u_{\mu}$	0.0	0.0	105.3	12.8	
$\overline{ u}_{\mu}$	0.1	0.0	6.9	17.9	
$ u_e + \overline{\nu}_e $	3.3	0.8	0.1	0.0	
NC	1.4	0.4	7.5	1.6	
Total (oscillated)	25.9	3.1	120.1	32.5	
Total (not oscillated)	5.5	1.2	466.6	94.9	
Data	31	3	124	34	

sin²(θ_{23})=0.5, δ_{CP} =- $\pi/2$ and NH \rightarrow maximize ν_e appearance, minimize $\overline{\nu}_e$ appearance

Any other combination reduce the number of e-like events in neutrino mode and increase the number of e-like events in anti-neutrino mode

Effect of oscillation parameters

CP violating term & violating parameter octors km)

- $\delta_{CP} = -\pi/2 \rightarrow enhance_{V_{\mu}} \rightarrow v_{e}, enhance_{V_{\mu}} \rightarrow v_{e}, suppress_{V_{\mu}} \rightarrow v_{e}$
- $\delta_{CP} = \pi/2 \rightarrow \text{suppress } \tilde{\nu}_{\mu}^{+} \rightarrow \tilde{\nu}_{e}^{/2}$; suppress v_{μ} enhance $\nu_{\mu} \rightarrow \overline{\nu}_{e}$
- Normal hierarchy
 - \triangleright enhance $\nu_{\mu} \rightarrow \nu_{e}$
 - suppress $v_{\mu} \rightarrow \overline{v}_{e}$
- Inverted hierarchy
 - suppress $\nu_{\mu} \rightarrow \nu_{e}$
 - enhance $\nu_{\mu} \rightarrow \bar{\nu}_{e}$

Observed spectra

Fake data studies

- In order to study the dependence of our oscillation analysis on the cross-section model we used we performed some fake data studies:
 - Generate fake data at ND280 and SK (including oscillation) using a different model
 - Fit ND280 fake data with our default model
 - Propagate expected spectra at SK and fit oscillation parameters

48

• 1P-1H

Oscillation

For θ₂₃ and Δm₃₂ the improvement due to the anti-neutrino runs is small

For θ₁₃ and δ_{CP} the addition of anti-neutrino allow to start breaking the degeneracy also when only T2K data are used

T2K short term prospects

- The main goal of T2K is to search for CP violation in the leptonic sector
- Currently our data show a preference for $\delta CP \sim -\pi/2$ but additional data are needed to confirm this preference
- T2K is approved to take 7.8×10^{20} POT and such statistics will be collected by $2020 \rightarrow$ currently we collected ~20%
- The requested statistics was driven by the sensitivity to θ_{13} \rightarrow now we know θ_{13} is large and our sensitivity to δ_{CP} will be greatly enhanced if we collect more statistics

Expect >90% sensitivity to δ_{CP} if $\delta_{CP} \sim -\pi/2$

T2K phase-II

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

Hyper-Kamiokande

DUNE

- T2K and NOVA are expected to complete their data taking by 2020
- The next-generation long-baseline neutrino oscillation experiment (DUNE or Hyper-Kamiokande) won't start data taking before 2027
- By 2020 we might have hints of CP violation but no new experiments before ~2026

T2K

NOVA

T2K has recently submitted a request for an extended running period (T2K-II) that will allow to collect 20x10²⁰ POT by 2026

Physics case

T2K-II Expression of Interest (10E21 POT for nu and 10E21 POT for an

			Signal	Signal	Beam CC	Beam CC	
	True δ_{CP}	Total	$\nu_{\mu} \rightarrow \nu_{e}$	$\bar{\nu}_{\mu} ightarrow \bar{\nu}_{e}$	$\nu_e + \bar{\nu}_e$	$ u_{\mu} + \overline{ u}_{\mu} $	NC
ν -mode	0	454.6	346.3	3.8	72.2	1.8	30.5
ν_e sample	$-\pi/2$	545.6	438.5	2.7	72.2	1.8	30.5
$\bar{\nu}$ -mode	0	129.2	16.1	71.0	28.4	0.4	13.3
$\overline{\nu}_e$ sample	$-\pi/2$	111.8	19.2	50.5	28.4	0.4	13.3

T2K-II upgrades

In order to reach T2K-II physics goal there will be updates to the accelerator con-1.3 MW

neu.

D

0.2

angle oscillation analysis, event rates and systematics, and the effect of the enhancements from reactor measurement line, and analysis improvements, was implemented by a simple scaling. Assumed ion and the matching of the parameters are: $\sin^2 2\theta = 0.085$, $\sin^2 \theta_{13} \pm 0.5$, $\Delta m^2_{23} = 2.5 \times 10^{-3}$

- The next steps for neutrino physics in Japan will be Hyper- $^{2.5 \times 10^{-10}}$ Kamiokande 43 and 0.6 are also studied.
- The sensitivity to CP violation (Δ)² for resolving sin δ_{CP} = 0 clotted as a function of 500 kiloton water Cherenkov detector using J-PARC atistical improvement neutrino beam (1.3 MW power) neutrinois to 2/3 of its current magnitude. When calculating sensitivities, the values of sin² θ₂₃, Δm²₃₂, and δ_{CP} are assumed to be constrained
 Start data taking in 2027, whidefinite measurement of CP-CP85 ± 0.005 [21]. violation in the leptonic sector A. ORCA, PINGU) are expected or plan to determine the mass metarchy before or during the proposed period of T2K-II[22, 23, 24, 25]. Hence both MH-unknown and -known cases are shown in Fig. 2. The fractional region for v56n

Conclusions

T2K is the leading long baseline neutrino oscillation experiment

- First observation of (electron) neutrino appearance and measurement of θ_{13}
- **Best measurement of atmospheric mixing angle** θ_{23}
- ➢ Hints of CP violation in the leptonic sector → look forward for new results at Neutrino
- Many nice measurements with the Near Detector
- It has been very exciting to be part of it!
- And it will still be
 - In the next 10 years we expect to increase by a factor of 20 the effective statistics
 - **Have >3 sigma sensitivity to** δ_{CP}
 - \triangleright Open the way to the next generation \rightarrow HyperKamiokande

Merci! Grazie! Thanks!

Back-up

v OSCILLATIONS AT T2K

$$P(\nu_{\mu} \to \nu_{\mu}) \sim 1 - (\cos^4 2\theta_{13} \sin^2 2\theta_{23} + \sin^2 2\theta_{13} \sin^2 \theta_{23}) \sin^2 \Delta m_{31}^2 \frac{L}{4E}$$

- Precision measurement of $2\theta_{23}$
- CPT tests with antineutrino mode ($\overline{v}_{\mu} \rightarrow \overline{v}_{\mu}$)

- θ_{23} dependence of leading term: "octant" dependence (θ_{23} =/>/<45°?)
- CP odd phase δ : asymmetry of probabilities $P(v_{\mu} \rightarrow v_{e}) \neq P(\bar{v}_{\mu} \rightarrow \bar{v}_{e})$ if sin $\delta \neq 0$
- Matter effect through x: $v_e(\bar{v}_e)$ enhanced in normal (inverted) hierarchy

(e) $\Delta m_{32}^2 \ (\Delta m_{13}^2)$ with reactor constraint

Neutrino/Antineutrino

NOVA results

Two v_e CC event selectors

- EM shower likelihood based LID
- Library Event Matching LEM
- Observe 6 LID, 11 LEM on BG of 1
 - 3.3 σ (LID), 5.3 σ (LEM)
- All LID events are in LEM
 - 7.8% P-value for this combination given expected overlap

Significance of NOvA result vs. Mass Hierarchy and δ_{CP}

- Use reactor θ_{13} constraint
- Marginalize over θ_{23} , other unknowns
- Hint in favor of Normal Hierarchy and δ_{CP} ~ $3\pi/2$

Expected events at Neutrino \rightarrow increased efficiency by 40%

Stably running at 400-500 kW, already collected 17% of their POT goal Will probably run anti-neutrino starting from next year

MH sensitivity at the end of the data taking (with old efficiencies)

