PhD main goal O ATLAS authorship project

Phenomenology part

Backup

Search for $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow 1 \ell^{\pm} + h(b\overline{b}) + \mathcal{E}_T$ with ATLAS at LHC Run2

<u>Rima El Kosseifi</u>* Thesis Directors: Jean Loic Kneur**, Steve Muanza*

* CPPM, IN2P3/AMU ** L2C, INP/UM2

PESBLADe Project, June 22 2016

PhD main goal ○	ATLAS authorship project	Phenomenology part	Backup 00000
Table of con	tents		

PhD main goal

- 2 ATLAS authorship project
- O Phenomenology part

4 Backup

PhD main goal ●	ATLAS authorship project	Phenomenology part	Backup
• Lo at	oking for $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \longrightarrow 1 \ell^{\pm} + \ell$ LHC Run2 with ATLAS.	$h(b\overline{b}) + \mathcal{E}_{\mathcal{T}} \sum_{p}^{p} \sum_{\tilde{\chi}_{2}^{0}}^{\tilde{\chi}_{1}^{\pm}} \sum_{h}^{W}$	$ \overset{\ell}{\overbrace{}} \overset{\nu}{\check{\chi}_1^0} \\ \overset{\tilde{\chi}_1^0}{\overbrace{}} b $
- 1 to - E	st: Run1 (\sqrt{s} =8TeV, L= 20 f st analyses using the Higgs be search for SUSY. Exclusion limit at 95% C.L. $m_{\tilde{\chi}_1^0} > 250$ GeV, $m_{\tilde{\chi}_1^0} = 0$ GeV	All limits at 95% CL Combination	- <i>ebb</i> observed limit - <i>efe</i> observed limit - <i>efq</i> observed limit W - 3 <i>e</i> observed limit

• <u>Near future</u>: Run2 (\sqrt{s} =13 TeV, L= 100 fb⁻¹): -Enhance the search sensitivity.

300 m_{2 2}[GeV]

PhD main go ●	al ATLAS authorship project	Phenomenology part	Backup 00000
G	Looking for $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \longrightarrow 1 \ell^{\pm} + h(b\overline{b})$ - at LHC Run2 with ATLAS.	$+ \mathcal{E}_{\mathcal{T}} \sum_{p}^{p} \underbrace{\tilde{\chi}_{1}^{\pm}}_{\tilde{\chi}_{2}^{0}} \underbrace{W}_{h} \underbrace{\tilde{\chi}_{1}^{\ell}}_{h} \underbrace{V}_{\tilde{\chi}_{2}^{0}}_{h} \underbrace{\tilde{\chi}_{1}^{\ell}}_{h} \underbrace{V}_{h} \underbrace{V}_{h}$) 1 1 1
e	<u>Past:</u> Run1 (\sqrt{s} =8TeV, L= 20 fb^{-1}): - 1 st analyses using the Higgs boson to search for SUSY. - Exclusion limit at 95% C.L. $m_{\tilde{\chi}_1^{\pm},\tilde{\chi}_2^0} > 250$ GeV, $m_{\tilde{\chi}_1^0}$ =0 GeV, Ref		erved limit

- Near future: Run2 (√s=13 TeV, L= 100 fb⁻¹): -Enhance the search sensitivity.
- <u>Timing</u>: Starting: Sep 2016 Goal: Preliminary results conf winter 2017, Publication after summer 2017 conf Rima El Kosseifi PDD 12 work in progress 2/15

• The tracker (pixel of Si) is the most important for b-tag

PhD main goal ○	ATLAS authorship project	Phenomenology part	Backup

• I'm studying the impact on b-tagging of:

- Varying the fraction of inactive modules in pixel layers
- Modifying the minimal pixel Time over Threshold:

To T \propto deposited charge in Si. More about ToT

PhD main goal	ATLAS authorship project		Backup
		●00000	

Suspect3 a SUSY spectrum calculator

- <u>Authors</u>: Fortran: A. Djouadi, J-L Kneur, G. Moultaka. - C++: Michael Ughetto, Dirk Zerwas.
- <u>Aim</u>:

- Computes pMSSM spectrum for SUSY breaking models mSUGRA, AMSB and GMSB.

- Implements the radiative corrections at full one loop for the masses and the dominant $\ensuremath{\mathsf{two \ loops \ for \ the \ Higgs}}$

- Input: SLHA file containing
 - SM inputs (M_Z , M_{top}^{pole} , $\alpha(M_Z)$, $\alpha_s(M_Z)$,...)
 - Boundary conditions of the SUSY breaking model.

PhD main goal O	ATLAS authorship project	Phenomenology part 00000	Backup

Pheno part

- Add the 125 GeV Higgs boson mass as input to Suspect 3 - while in the present version it is calculated as output
- Benefit for all SUSY analyses:

- Facilates pMSSM scans by avoiding large number of incompatible models.

 Task: Look for free parameters in the Higgs and stop sectors (i.e.: μ, A_t, tanβ) computable for a known Higgs boson mass.

PhD main goal	ATLAS authorship project		Backup
		00000	

• Reminder of the simple approximation for the Higgs mass radiative corrections (RC)

$$m_{h}^{2} = m_{h}^{2,tree} + \frac{3g_{2}^{2}m_{t}^{4}}{8\pi^{2}m_{w}^{2}sin^{2}(\beta)} \left[ln(\frac{m_{\tilde{t}_{1}}m_{\tilde{t}_{2}}}{m_{t}^{2}}) + \frac{X_{t}^{2}}{2M_{s}^{2}} - \frac{X_{t}^{4}}{12M_{s}^{4}}\right]$$

With $X_{t} = A_{t} - \mu cot(\beta)$
 $M_{s}^{2} = \sqrt{m_{Q}^{2}m_{t_{R}}^{2} + m_{t}^{2}(m_{Q}^{2} + m_{t_{R}}^{2}) + m_{t}^{4}}$
 $m_{\tilde{t}_{1}}m_{\tilde{t}_{2}} = \sqrt{M_{s}^{4} - 4m_{t}^{2}X_{t}^{2}}$

• Possible inversions: 125 Higgs boson mass $\xrightarrow{1} A_t$

$$\begin{array}{c} \xrightarrow{2} & \mu \\ \xrightarrow{3} & tan\beta \\ \xrightarrow{4} & m_{H_{u}}^{2}, m_{H_{d}}^{2} \end{array}$$

PhD main goal ○	ATLAS authorship project	Phenomenology part 0000000	Backup

- Example: *A_t* computation:
 - Input: tan(eta), μ , $m^2_{H_u}$, $m^2_{H_d}$
 - Procedure: $m_A \rightarrow m_H^{tree} \rightarrow \text{RC}$, Quadratic equation in $X_t^2 \rightarrow \text{multiple } A_t$ solutions
- <u>Technical difficulties</u>:
 - Multiple solutions: Constraints to reject unwanted solutions
 - Convergence of the iterative procedure
- <u>Status</u>: First code version with the 4 inversions working well and in validation.
- <u>Future work</u>: Replace RC with the full one loop for the masses and the dominant **two loops for the Higgs** relation.

PhD main goal ○	ATLAS authorship project	Phenomenology part 000000	Backup

Input	Output
type of inversion $=1$	A _t
$m_H \exp = 125 \text{ GeV}$	
m _{top} =173 GeV	
$m_W = 80.1 \text{ GeV}$	
$m_Z = 90.1 \text{ GeV}$	
$m_{t_R} = 2000 \text{ GeV}$	-2004.48 correct value relative deviation=0.24%
$m_Q = 2000 \text{ GeV}$	2204.48 unwanted value
$g_c = 0.64$	
an(eta)=10	
$\mu = 1000$	
sign of $\mu=+1$	
$m_{H_{ m e}}^2 = -984135 { m GeV}$	
$m_{H_d}^{2d}$ =-1.01164e+06 GeV	

PhD main goal	ATLAS authorship project		Backup
		000000	

Thank you for your attention!

PhD main goal	ATLAS authorship project	Phenomenology part	
	00	000000	00000

LHC and ATLAS

- Physics Goals: Precise tests of the SM and searche for New physics (<u>SUSY</u>, Extra Dimensions,..)
- Proton-proton collision
- Run 1: $\sqrt{s}=8(7)$ TeV in 2012(2011) $\int Ldt \sim 20(5)$ fb⁻¹, Higgs boson found !!!
- Run 2: \sqrt{s} =13 TeV in 2015 \rightarrow 2018 $\int Ldt \sim 100 \text{ fb}^{-1}$

PhD main goal O	ATLAS authorship project	Phenomenology part	Backup 0●000

LHC and ATLAS

• Inner Detector (tracker): The most important for b-tag

as we need accurate tracking and vertiexing

 $\sigma(d_0) = 35 \mu m$ for typical trk with $p_T = 5$ GeV

Calorimeter: Reconstruct and measure energy of photons, electrons and jets composed of electromagnetic and hadronic calorimeters

• Muon spectrometer:

Reconstruct muon tracks and measures their momentum

Muon spectrometer

- Tracks from B-hadron decay at the SV are characterised by large impact parameters (IP)
- The IP (d_0, z_0) is the distance from the point of closest approach of the track to the PV.
- Other ATLAS b-taggers: the multivariate Mv2c10
 - It combines the output of the simple taggers (IP3D, SV, ..)

PhD main goal ○	ATLAS authorship project	Phenomenology part	Backup 000●0

- The Pixel detector measure the Time-over-Threshold (ToT):
 - the time in which the signal is above threshold.
 - In units of bunch crossings (BC), i.e. 25 ns
- ToT is proportional to the deposited charge.

$$ToT = A\frac{Q+E}{Q+C}$$

- A, E and C are calibrated for each FE.
- RUN1 calibration ToT@mip30 =19000e
- The threshold represents the efficency to have a hit from charged particle
 - it corresponds to 3500e \Rightarrow hits with time < threshold is not read.

PhD main goal ○	ATLAS authorship project	Phenomenology part	Backup 0000●

 b-tagger performances for different fraction of pixel inactive modules and minimal ToT values

Rima El Kosseifi

¹² work in progress