Extended scalar sector in DTHM

 $H^{\pm\pm} \to W^\pm W^\pm$

Venugopal Ellajosyula* Cristinel Diaconu*, Yanwen Liu**, Ruiqi Zhang** Lorenzo Basso*, Gilbert Moultaka***

June 27, 2016

*CPPM/Aix-Marseille University **CPPM/USTC Hefei, China ***UM2, Montpellier

1. Motivation and model description

2. Phenomenology

3. Experimental analysis

Motivation and model description

- Massless neutrinos in Standard Model. But neutrino oscillation discovered \rightarrow neutrinos have mass.
- On of the ways to obtain neutrino masses is via the type II seesaw by introducing a scalar triplet.
- Since triplet hypercharge, Y = 2 ($Q = I_3 + \frac{Y}{2}$), doubly charged Higgs is a unique feature with clean decay channels.
- Rich scalar structure $(H^{\pm\pm}, H^{\pm}, A^0, H^0, h^0)$.
- Naturally obtain a Standard Model-like Higgs.
- The main reference is The Higgs potential in Type II Seesaw models.

Focus of this talk is on charged Higgses, in particular $H^{\pm\pm}$.

The potential

A scalar triplet, Δ , with a hypercharge, $Y_{\Delta} = 2$, is included along with the SM doublet. $H \sim (1,2,1), \Delta \sim (1,3,2)$ under the SM gauge group, $SU(3) \times SU(2) \times U(1)$. The most general Lagrangian in the scalar sector can then be written as,

$$\mathcal{L} = (D_{\mu}H)^{\dagger}(D^{\mu}H) + Tr(D_{\mu}\Delta)^{\dagger}(D^{\mu}\Delta) - V(H,\Delta) + \mathcal{L}_{Yukawa}$$
(1)

where $V(H, \Delta)$ is given by,

$$V(H,\Delta) = -m_{H}^{2}H^{\dagger}H + \frac{\lambda}{4}(H^{\dagger}H)^{2} + m_{\Delta}^{2}Tr(\Delta^{\dagger}\Delta) + [\mu(H^{\dagger}i\sigma^{2}\Delta^{\dagger}H) + h.c.]$$

+ $\lambda_{1}(H^{\dagger}H)Tr(\Delta^{\dagger}\Delta) + \lambda_{2}(Tr\Delta^{\dagger}\Delta)^{2} + \lambda_{3}Tr(\Delta^{\dagger}\Delta)^{2}$
+ $\lambda_{4}H^{\dagger}\Delta\Delta^{\dagger}H.$

Besides the yukawa terms in SM, an additional term for the neutrinos is added. if Y_{ν} denotes the neutrino yukawa, this term is:

$$\mathcal{L}_{Yukawa} \supset -Y_{\nu}L^{T}C \otimes i\sigma^{2}\Delta L \tag{2}$$

where L: $SU(2)_L$ lepton doublets.

Possible production mechanisms of doubly charged Higgs include

- Pair production: $\gamma^*, Z^* \rightarrow H^{\pm\pm}H^{\mp\mp}$
- Associated production: $W^{\pm *} \rightarrow H^{\pm \pm} H^{\mp}$
- Single production: $W^{*+}W^{*+} \rightarrow H^{\pm\pm} \Rightarrow$ much smaller contribution.

Figure 1: Pair-production and Associated-production

Decay Modes

Two main modes of decay to choose from:

- $H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}$. Searches for this mode have been performed at L3, OPAL, Delphi, CDF, ATLAS, CMS .. assuming 100% BR.
- $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm} \rightarrow \ell^{\pm}\ell^{\pm}\nu\nu$.

Dependence of branching ratio into leptons and W's on the vev of the triplet (v_t) shown below. Source: Testing type II seesaw

Arbitrarily high values of v_t are not allowed.

- Custodial symmetry in the SM forces $\rho \sim 1.$
- In DTHM, modified ρ at tree level is given by,

$$\rho = \frac{v_d^2 + 2v_t^2}{v_d^2 + 4v_t^2} (<1),$$

- At 2σ level, experimentally measured $ho_0 = 1.0004 \pm 0.00048$
- Upper bound on v_t of about 1.6 GeV.

Phenomenology

Type 2 Seesaw with dominant WW decay mode

Kanemura et al studied a region in parameter space where $H^{++} \rightarrow W^{\pm *} W^{\pm *}$ is dominant i.e. $v_t > 0.1$ MeV.

- Production: $pp \to \gamma^*/Z^* \to H^{\pm\pm}H^{\mp\mp}$ and $pp \to W^{\pm*} \to H^{\pm\pm}H^{\mp}$.
- Assumption: $H^{\pm\pm}$ and H^{\pm} have the same mass.

- Triplet Higgses have fermiophobic couplings (couplings proportional to neutrino masses).
- The existing limits on H^{\pm} or the other Higgses don't apply because of the triplet coupling.
- Lower limit reduced to 85 GeV from about 400 GeV(set by ATLAS (included in the backup) and CMS in leptonic decay modes).

Parameter and Cross-sections

Different processes can have the same final states in this model. For example:

$$pp \to \gamma^*, Z^* \to H^{\pm\pm}H^{\mp\mp} \to 4W \to 3\ell + 2j + E_T^{miss}$$
 and
 $pp \to W^{*\pm} \to H^{\pm\pm}H^{\mp} \to 3W + Z \to 3\ell + 2j + E_T^{miss}$

Cross-sections of other processes giving the same final states need to be evaluated to estimate the contributions.

Figure 2: Cross-sections as a function of the mass of $H^{\pm\pm}$

The model was implemented in CalcHEP. Parameters for simulation:

- $\sin \alpha = 10^{-4} \Rightarrow \text{mixing between netural}$ \mathcal{CP}_{even} Higgses is negligible.
- $m_{h^0} = 126 \text{ GeV}$
- $m_{H^{\pm\pm}} = 200 \,\, {
 m GeV}, \,\, m_{H^{\pm}} = 193 \,\, {
 m GeV}$
- $m_{H^0} = m_{A^0} = 163 \text{ GeV}$

These are parameters allowed by all the theoretical constraints put together.

Experimental analysis

Signal region definitions: $mH^{\pm\pm} = 200 \text{ GeV}$

The dominant backgrounds are:

- Prompt: WZ, ZZ. These are estimated from MC.
- Non-prompt: $t\bar{t}$, Z+jets. These are estimated using data-driven methods.

Both regions employ some event level cuts such as triggers, p_T cuts, E_T^{miss} , $M_{\ell\ell}$. The analysis further exploits some discriminating variables such as angular correlations between the leptons etc.

Examples of discriminating variables

Figure 3: $\Delta \phi$ between leptons and E_T^{miss} in $2\ell^{ss}$ channel

Figure 4: ΔR between same-sign (left) and opposite-sign leptons in 3ℓ channel

Sensitivity

Figure 5: Expected sensitivity at 30 fb^{-1}

Using the above mentioned cuts, the expected sensitivity in the combined two-lepton and three-lepton channels was about 2.9σ .

Background: Control plots

ttbar

- Two tight leptons with opposite sign leptons, pT at least 20 GeV.
- |InvMII ZMass| > 20 GeV
- At least two b-jets(MV2c20_77).

WZ

- Three tight leptons, pT at least 20 GeV.
- |*InvMll − ZMass*| < 45 GeV.
- B-Veto(MV2c20_77) and MET at least 20 GeV.

- The model was implemented in CalcHEP.
- Lots of possible variations.
 - Associated production
 - Generalized parameters etc.
 - Targeting a phenomenology paper with these studies.
- Analysis is in place.
- Targeting Moriond 2017 with 2015 and 2016 data for a CONF-NOTE.
- Experimental paper by September 2017.

Backup