27th ICNTRM, Strasbourg 28/08-01/09 2017

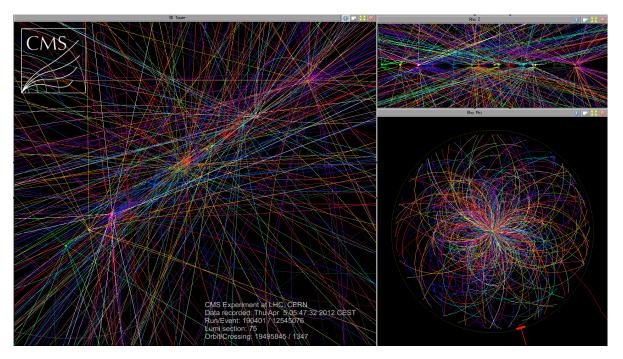
Progress on silicon detectors from high-energy physics for small and large-scale systems

J. Baudot

de Strasbourg

- → Trend in HEP tracking
- → Silicon technologies
- Applications in dosimetry and life science

Trend in HEP tracking


- → Goals
- Constraints on sensors
- → Various optimisation:
 - →e+e- colliders
 - →p+p colliders

Tracking & vertexing goals in HEP

- Measuring
 - Particle trajectories

• Particle origins (vertex)

Main assets / pure tracking performances

- Best resolution on particle crossing point
- Many measured points (K)

Lowest material budget

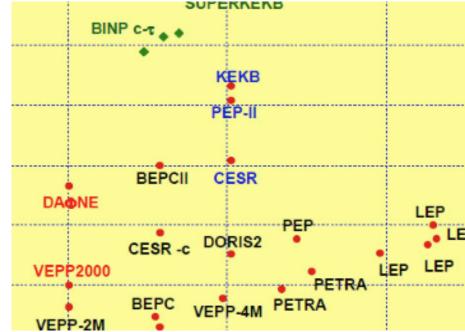
$$\frac{1}{BL^2} \frac{\sigma}{\sqrt{K+6}} p_T \oplus f(\text{mult.scattering})$$


 $\sigma_{\underline{p_T}}$

 p_{T}

0.3q

Example: the CMS tracker (LHC)

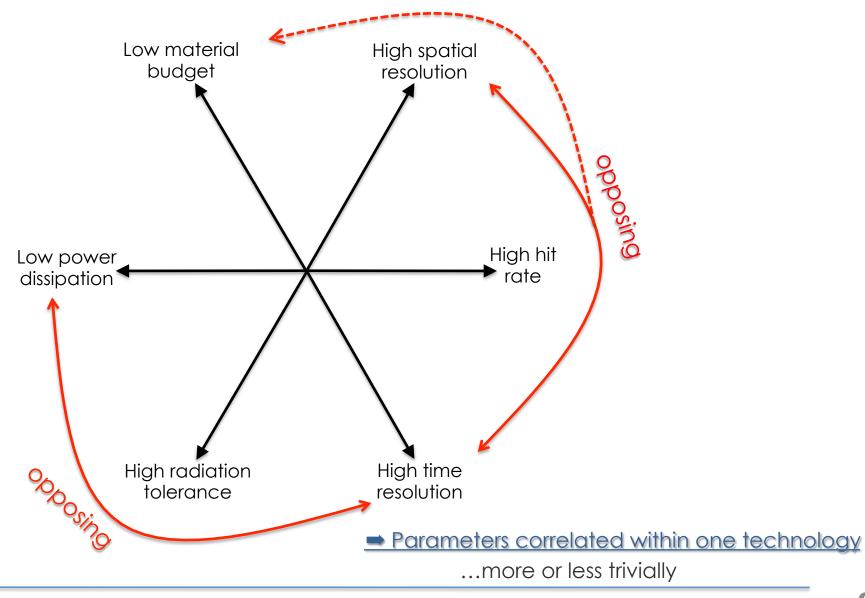


J.Baudot - Progress on silicon detectors for small and large-scale systems - INCTRM 2017

Constraints from HEPhysics goals

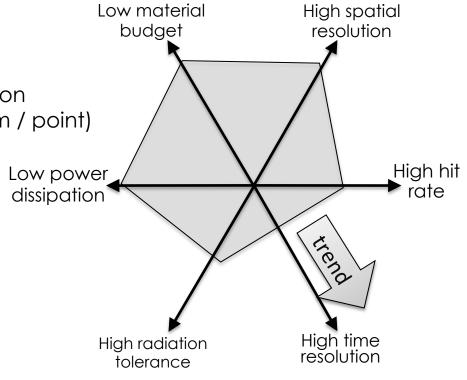
- New processes \Rightarrow 2 main frontiers
 - Heavy new particles -> high energy
 - $m_{Higgs \ boson}$ ~125 GeV/c², $m_{top \ quark}$ ~170 GeV/c²
 - Rare processes → high luminosity
 - cross sections of interest
 fractions of picoBarns

- Consequences on detectors
 - Hit rate could reach 10⁷ particles/cm²/s
 - BUT tracking algo max occupancy < few %
 → time resolution
 - Radiation environment Ionizing (MGy) & non-ionizing (10¹⁶ n_{eq}/cm²)
 - → tolerance through high SNR



- many points + speed + low mass
 - → minimal power dissipation

Requirements on sensing layers

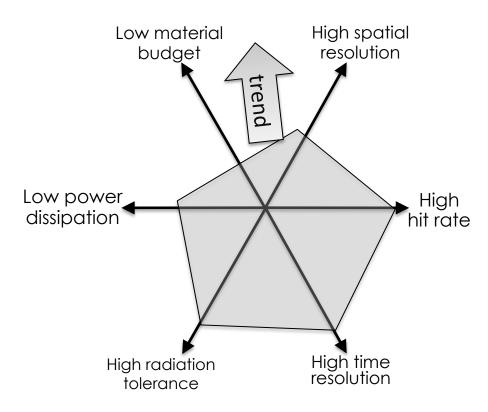


Leptonic e+e- collisions

<u>History (20th century <2010)</u>

- SLD had the first and only CCD-based vertex detector
- LEP introduced strips and pixel hybrid
- B-factories most precise vtx det. so far
- ~10-20 tracks /event, almost no radiation
 BUT need for tracking precision (~10 µm / point)
- SuperKEKB / Belle II (2018)
 - x100 luminosity $\Rightarrow \sigma_{\text{time}} \sim 10 \text{ ns}$
- Next linear colliders (~2030)
 - > 100 tracks / event
 - Single point resolution $\sigma_{\text{point}} \lesssim 3 \, \mu m$
 - Material budget 0.1 0.2 % X₀
 - Separating primary collision
 - ILC needs $\sigma_{\rm time}$ ~100 ns
 - CLIC needs $\sigma_{\rm time}$ ~10 ns

Technical choice \Rightarrow monolithic & hybrid

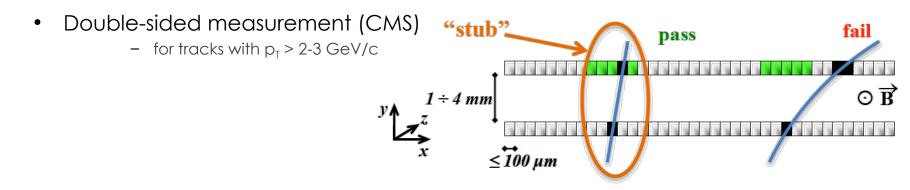

Hadron colliders (ATLAS, CMS, LHCb)

Current LHC (2008-21)

- Beam-crossing every 25 ns
 - 40 collisions / beam crossing
 - Few 1000 tracks / event
- Radiation at 4-5 cm
 - 500 kGy / year
 - few $10^{14} n_{eq} (1 \text{ MeV})/\text{cm}^2$

High-luminosity LHC (>2024)

- Instantaneous lumi x10
 - Pile-up of 200-400 p+p collisions
- Radiation
 - 15 MGy / year
 - few 10¹⁶ n_{eq}(1 MeV)/cm²
- Improved track param. resolution
 - material budget ~ $\% X_0$
 - Single point resolution $\sigma_{point} \sim 10 \, \mu m$

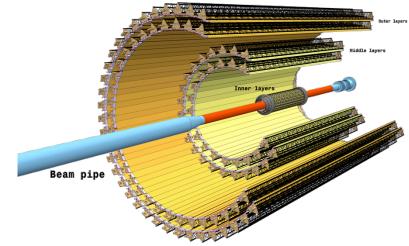


Still on High Lumi. - LHC

- Key aspect on hadron machine = triggering
 - ← Huge gap in cross-sections (from milli to pico barns)
 - Online momentum measurement through tracking

- Smart & fast algorithm in FPGA (ATLAS, CMS)
 - Typically < 2 μ s to take decisions
- LHCb has given up "hardware" trigger

Additional systems



Heavy ion collisions

- STAR @ RHIC, ALICE @ LHC
- Rather similar to e+e- requirements
 - Low momentum
 - Lower luminosity (large cross-sections)
- But some radiation hardness required

Fixed target experiments

- Usually high luminosity
 - Radiation tolerance important
 - Time resolution
- Spatial resolution & material budget depends on momentum produced

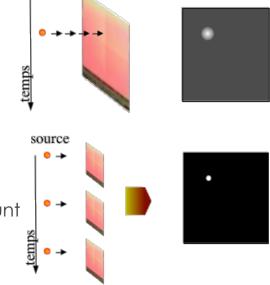
ALICE new-ITS, 10 m², 12.5 Gpixels technology ⇒ monolithic

+

Silicon technologies

CMOS sensors

→ Hybrids


→ Silicon On Insulator

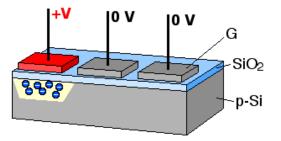
Preliminary remark: read-out

Read-out : "Imaging" vs HEP

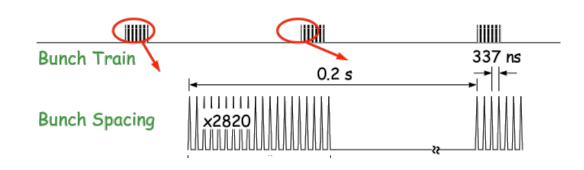
- Std imaging sensors ⇔ usually INTEGRATION
 - One channel signal = several
 - Key parameters: dynamic, point spread function, noise
 - Single frame 100% occupied
- Tracking sensors ↔ COUNTING single particles
 - Key parameters: resolution (E, t, position), SNR, dark count
 - Single frame ≤1% occupied
- Both can build image...with various qualities
 - Strong impact on read-out electronic design

Preliminary remark: exhaustiveness

Non-exhaustive talk


- Silicon pads (large diode array)
 - Large pixel = mm range
- Silicon drift detector (SDD)
 - Marginal in HEP (STAR, ALICE)
 - X-ray detection
- CMOS avalanche detector
 - Including SPADs in CMOS
 - Combine 100 ps & few µm resolution
 - Still in development
- ... (\leftarrow this is for what I've forgotten)

CCD


THE standard imaging sensors

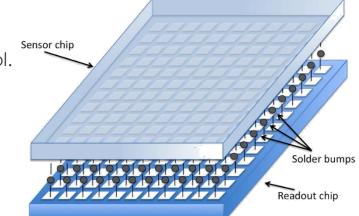
- Already challenged by sCMOS on scientific market
- Integrating sensor, by structure
- Full depletion possible

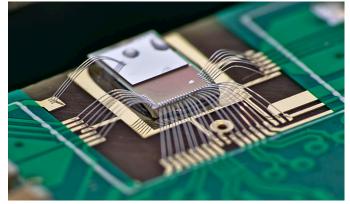
In HEP

- First application at SLC e+e-(<2000)
 - Super precise, Low mass, super-slow read-out
- Proposed for ILC
 - Fine-pixel CCD
 - 5-6 µm pixel size
 - Delayed readout / specific ILC time-structure

Hybrids (strips & pixels)

THE standard approach in HEP

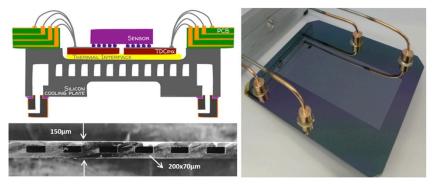

- Implement powerful processing
 - Pre-ampli + shaper \Rightarrow time & energy resol.
- Radiation hardness
 - Si type adapted
 - 3D sensors
- Recently edgeless sensors


<u>"limitations" / pixels</u>

- Relatively large pixel size
 - Limited by bump-bonding & processing
 - Current ATLAS 50x250 $\,\mu m^2,\,CMS$ 100x150 $\,\mu m^2$
- Relatively thick ⇐ 2 thickness of silicon
- Sensitivity to low ionizing particles
 - Typical minimal threshold ~1000 e-

Developments / CLIC

- targets pitch 25x25 µm²
- with thickness 50 μm (ASIC) + 50 μm (Sensor)
- Some functional prototypes



Hybrids (strips & pixels)

Developments / LHC

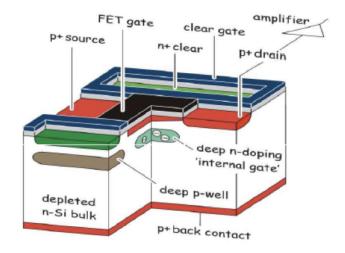
- New cooling techniques (power hungry >100 µW / pixel)
 - Micro-channel in Si (∞~100 µm) for few W/cm²

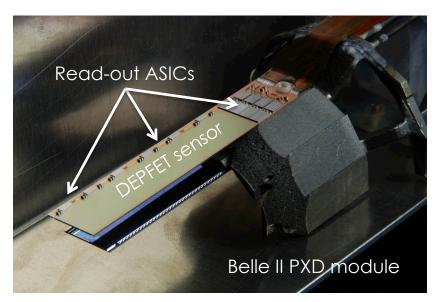
NA62 GigaTracker

- New ASIC process 65 nm (CERN-RD53 dvpmt)
 - Tolerance to 5-10 Mgy
 - Allows for few 100 px time resolution

DEPFET

<u>A "monolithic" approach</u>


- Driven by imaging (X-rays, electrons)
- Amplification in-pixel but no processing
- Fully depleted volume 300 to 50 µm (thinned)


First detector for HEP in 2018

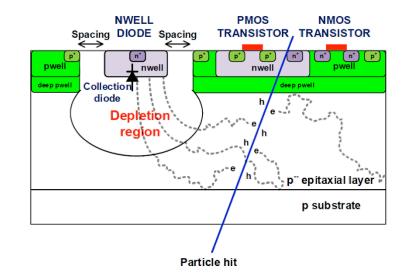
- Belle II vertex detector (PXD)
- The thinnest detector 0.18 % X_0 / layer
- Pitch not crucial: 70 µm
- 20 µs integration/read-out time

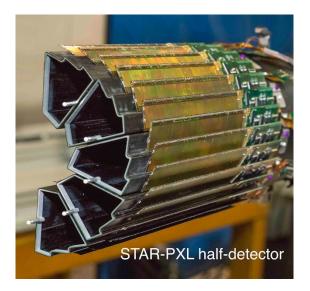
Toward ILC

• Smaller pixel 20 µm

CMOS Pixel Sensor

Monolithic Active Pixel Sensors


- Inherited from commercial camera
 - First proposed in 1998 @ Strasbourg for HEP
- Assets
 - Small pixels
 - Sensitivity to low signals
 - Low material budget
 - Embedded processing -> easy integration

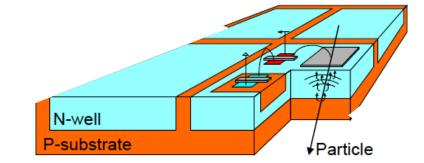

First detector in HEP: 2013

- STAR vertex detector (PXL)
- Small pitch 20 µm
- Small material budget 0.37 % X₀ / layer
- "Slow" read-out 180 µs

First tracker in HEP: 2019

- ALICE Inner Tracking System 10 m²
- Small pitch 25 μm & material budget ~0.4 % X_{0} /layer
- Very low power dissipation ~70 mW/cm²
- Fast read-out with short integration time <10 µs

CMOS pixel sensors: on-going

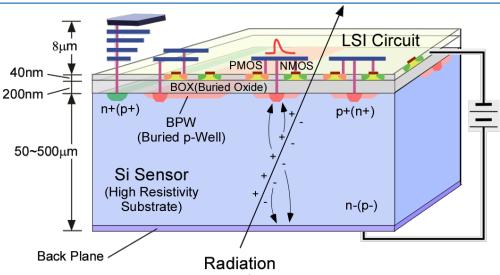

Limitations

- Processing power / pixel size
 - Impact time resolution

Developments

- Full depletion (achieved)
 - High voltage (>10 V) and/or high resistivity (kΩ.cm)
- Faster
 - Few 100 ps for Mu3e (HV-CMOS)
 - 7 ns for CLIC (HR-CMOS)
 - Few 100 ns timestamp at ILC
- More tolerant / radiation
 - ATLAS tracker (HR-CMOS)
 - CBM vertex @ FAIR-GSI (HR-CMOS)
- 3D-like bonding for CLIC pixel 25 vm
 - Capacitive coupling HV-CMOS+ASIC
- Super low-power -> ATLAS tracker

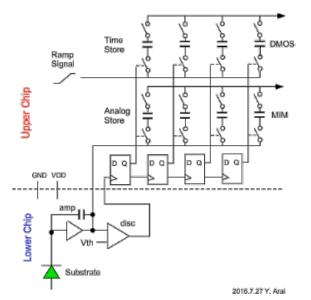
- Radiation hardness
 - Std techno not fully-depleted



SOI

<u>A monolithic-hybrid ?</u>

- Includes fully depleted sensitive layer 50-700 µm
- Includes processing power
 - less constraint / CMOS sensors
- Large SNR
- Relatively weak to radiation
 - thick oxyde



(X-ray, Electron, Alpha, Charged Particles, ...)

- Current usage
 - Mostly for imaging (X-rays)
 - Synchrotron, medical, astronomy, ...

Project in HEP: ILC

- Enhanced signal treatment within 20 µm pixel
 - Spatial & time resolution
- Still prototyping

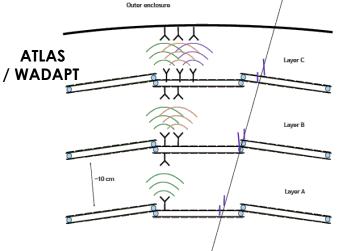
Alleviate the cable conundrum ATLAS project for Si-strip tracker Goal is 100 Thes with multi Ches reporters

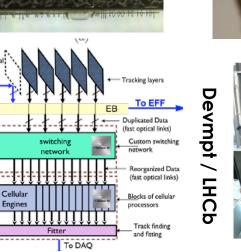
- Goal is 100 Tbps with multi Gbps repeaters
- 60 GHz band @ small-distance
- Power? ~150 mW/cm²

Mechanical support

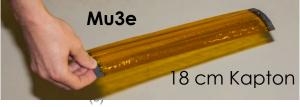
Wireless

- 50 µm Si + ? = 0.1-0.2 % X₀
- ILC, CLIC, MU3e


- FPGA-farms
- highly parallelized structures


2 mm SiC

50 µm Si


100 µm Kapt

"Miniaturisation"

ILC / PLUME

Applications in dosimetry and life science

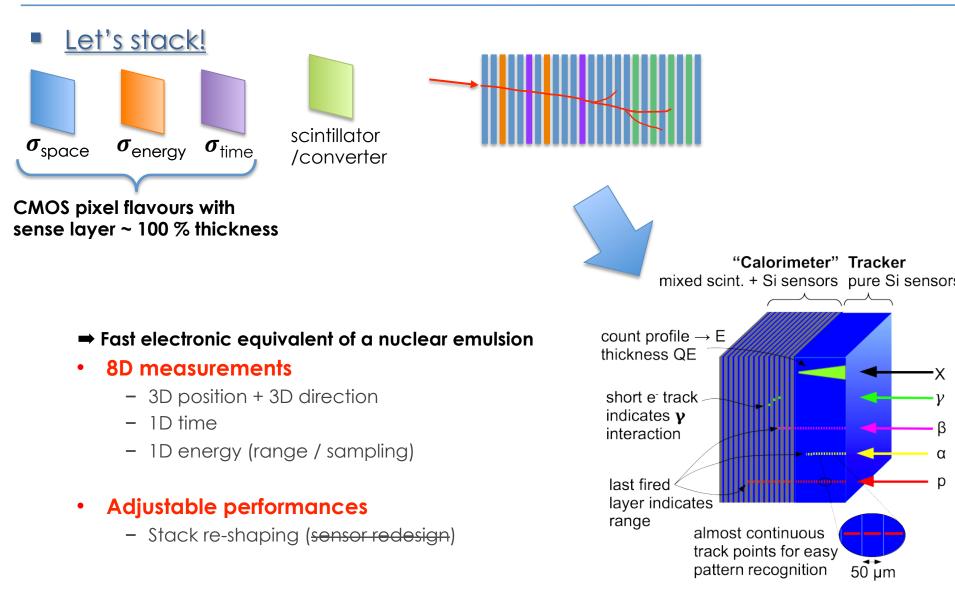
Skipping all imaging X-rays, electrons, neutrons

Highlights with CMOS pixel sensors
 Still tracking
 "extreme" integration

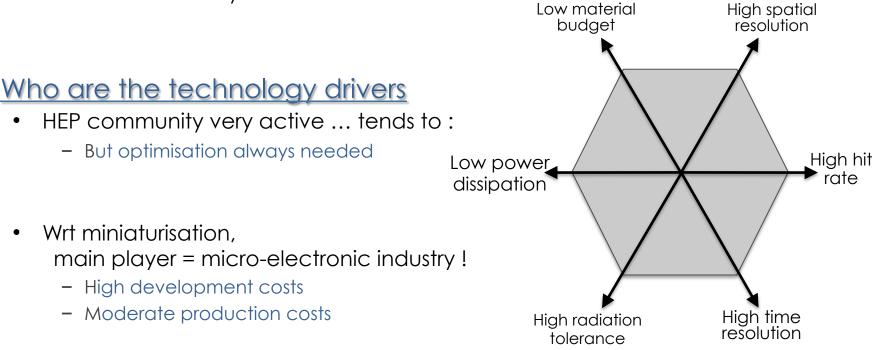
→1 dream

Charged particles dosimetry

Molecular imaging with β+ emitters in moving rodent


- MAPSSIC: extreme integration in specific environment
 - Constraint on size and power dissipation
 - IMNC, IPHC, CPPM, CERMEP, NeuroPSi
- Exploit CMOS sensors derived from ALICE
 - One active probe = $160 \mu W$
 - For few counts / s
 - Wireless connection

DREAM of electronic emulsion



Conclusion

Miniaturisation is helpful

- Easier to integrate sensors
- Smarter sensors → helps getting exactly what you need (limit bandwidth)
- But could be costly

