Chargino-Neutralino pair production and b-jet identification with ATLAS at Run 2

Rima El Kosseifi*

Thesis directors: Steve Muanza*, Jean Loic Kneur**

** L2C, INP/UM2 *CPPM, IN2P3/AMU

JRJC 2016, December 9, 2016

MONTPELLIER

PhD between **CPPM** in Marseille and **L2C** in Montpellier with 2 parts: **Experimental:**

- Search for Chargino-Neutralino pair production with ATLAS at LHC Run 2
- Improvement of b-jets identification

Phenomenology:

→ Contribution to SUSY spectrum calculator "Suspect 3" developed at Montpellier

Outline

- Supersymmetry
- Search for ElectroWeak SUSY (Chargino-Neutralino)
- b-jets identification
- Suspect 3 new version

2122

- SM is incomplete and SUSY is the most motivated theory beyond it
- Introduces a new symmetry between fermions (spin-1/2) and bosons (spin-1)
- New discrete Quantum number: R-parity: $R = (-1)^{3(B-L)+2S} = +1$ SM particles
 - = -1 SUSY particles
- Conserved R parity: ---> SUSY particles produced/annihilated in pairs
 Lightest SUSY particle (LSP) stable neutral weakly interacting
 DM candidate

• LHC searches were focusing on strong production of SUSY with larger cross sections than EW

- If the higgsino mass parameter is large $\xrightarrow{\sim} \chi_1^{+}$ is a Wino-like
 - \rightarrow interacts with fermions by gauge couplings
 - $\longrightarrow \widetilde{\chi_1^0}$ is a Bino-like
 - → interacts by g1

- Invariant mass of bb system compatible with Higgs boson mass of 125 GeV
- High MET (>100 GeV) is required
- Tagging correctly the 2 jets is crucial to better separate signal from background
- Main backgrounds: ttbar, W+jets

Results

• Run 1

→ No significant excess observed wrt SM

- ▶ Exclusion limit at 95% C.L. set at
- m $\sim_{\chi_1^{\mp}}$ \sim_0^{0} >250 GeV for m \sim_0^{0} = 0 GeV χ_1^{0}

	Run 1 2012	Run 2 2015-2018
Center of mass energy	8 TeV	13 TeV
Integrated luminsity	20 fb ⁻¹	100 fb ⁻¹
signal cross section	0.1 pb 	0.7 pb
ttbar cross section	0.25 fb x4_	0.83 fb

 \rightarrow Enhance the search sensitivity.

• Goal: Paper combining the different Higgs decay channels results after summer 2017 conf

b-jet identification with Atlas at LHC Run 2

b-tagging

• Jets:

Collimated bundles of particles from hadronization of quarks, gluons

Reconstructed using energy deposited in calorimeters

- **b-jet:** jet from b-quark, it contains a B-hadron
- Properties of **B-hadrons**:

► Longer lifetime.

B-hadron forms secondary vertex, tracks have large impact parameter d₀

b-tagging

Performance of a b-tagging algorithm *its power to separate b from c and light-jets*

Represented as the light-jet rejection vs b-jet efficiency,

- Operating points (OP) *single cut value on the discriminating variable of an algorithm*
- Cut is chosen to provide a specific b-jet efficiency on a simulated sample

b-tagging and IBL

- The tracker is the most important for b-tagging 2468 pixel modules
- Resolution on position improved:

10 μ m in (R, ϕ) and 70 μ m in Z

→ good accuracy on impact parameters measurement

→ good SV reconstruction

• However, pixel modules can turn inactive

▶ affect badly the reconstruction of the tracks, b-tagging performance as well.

It was needed to quantify the impact on the b-tagging performance for such scenarios

11/22

- We simulated several scenarios with varying **the fraction of inactive pixel modules** (y) from 6% to 35% in IBL (L0, L1, L2).
- Scenarios with an entire layer disabled were also produced to estimate the highest effect
- We used two different samples (ttbar and Z' mix) to cover all the jet pt ranges
- Configurations produced are:

	ttbar sample (y%)	Z' mix (y%)
IBL scenarios	{ 6 , 9 , 15, 25, 35 . 100 }	{35. 100}
L0 scenarios	{ <mark>6</mark> , 9 , 15, 25, <u>35</u> , <u>100</u> }	{35. 100}
L1 scenarios	{ <mark>6</mark> , 9, 100}	{100}
L2 scenarios	{ <mark>6, 9, 100</mark> }	{100}

• Performance of IP3D, SV1, JetFitter and Mv2c10 were compared to the baseline

- Differences seen by comparing the scenarios wrt baseline:
 - Impact parameter resolution of tracks
 - Track multiplicity in jet
 - b-tagging algorithms discriminant distributions
- The discriminating distributions are varying per scenario

OP doesn't correspond to the same b-jet efficiency in the baseline and in a scenario

- 2 ways to look for performance degradation for a scenario wrt baseline
 - \rightarrow By modifying the OP to reach the same b-jet efficiency and then compare light jet rejection

→ Without modifying the OP, check the degradation per scenario in b-jet efficiency, light-jet rejection and c-jet rejection

b-tagging

Phenomenology: Suspect 3 new version

- Add the 125 GeV Higgs boson mass as input to Suspect 3
 - Suspect 3 is a SUSY spectrum calculator
 - \blacksquare In the present version this mass is calculated as output
- Benefit for all SUSY analyses:
 - → Facilitates pMSSM scans by avoiding large number of incompatible models
- Task: Look for free parameters in the Higgs and stop sectors (i.e.: μ , A_t , tan β) computable for a known Higgs boson mass

Suspect 3

17/22

• Authors:

- → Fortran: A. Djouadi, J-L Kneur, G. Moultaka
- → C++: A. Djouadi, J-L Kneur, G. Moultaka, M. Ughetto, D. Zerwas.

• Aim:

→ Computes pMSSM spectrum for SUSY breaking models mSUGRA, AMSB and GMSB.

→ Implements the radiative corrections at full one loop for the masses and the dominant two loops for the Higgs.

• Input: SLHA file containing

► SM inputs ($M_{z_i} M_{top}, \alpha(M_z), \alpha_s(M_z), ...$)

Boundary conditions of the SUSY breaking model.

• Reminder of the simple approximation for the Higgs mass radiative corrections (RC)

$$m_h^2 = m_h^{2,tree} + \frac{3g_2^2 m_t^4}{8\pi^2 m_w^2 \sin^2(\beta)} \left[ln(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}) + \frac{X_t^2}{2M_s^2} - \frac{X_t^4}{12M_s^4} \right]$$

With $X_t = A_t - \mu \cot(\beta)$
 $M_s^2 = \sqrt{m_Q^2 m_{t_R}^2 + m_t^2 (m_Q^2 + m_{t_R}^2) + m_t^4}$
 $m_{\tilde{t}_1} m_{\tilde{t}_2} = \sqrt{M_s^4 - 4m_t^2 X_t^2}$

• Possible inversions:

- Technical difficulties:
- Multiple solutions: Need Constraints to reject unwanted solutions
- Convergence of the iterative procedure
- Status: First code version with the 4 inversions working well and in validation.
- Future work: Replace RC with the full one loop for the masses and the dominant two loops for the Higgs relation

Suspect 3

• We computed $m_{H_u}^2$, $m_{H_d}^2$ using inversion 4 for A_t = -2000.

Input	Output
type of inversion= 1	A _t
$m_H exp = 125 GeV$	$m_A^{tree} = 65 \text{ GeV}$
$m_{top} = 173 \text{ GeV}$	$m_H^{tree} = 62.5 \text{ GeV}$
$m_W = 80.1 \text{ GeV}$	RC= 11719.3 GeV ²
$m_Z = 90.1 \text{ GeV}$	
m _{tR} = 2000 GeV	$A_{t_1} = -2004.48$ correct value,
m _Q = 2000 GeV	relative deviation=0.24%
$g_c = 0.64$	
tan(eta) = 10	A_{t_2} = 2204.48 unwanted value
$\mu = 1000$	
sign of $\mu{=}+1$	
$m_{H_u}^2 = -984135 \text{ GeV}$	
$m_{H_d}^{2^{10}}$ = -1.01164e+06 GeV	

Summary

22/22

- Ongoing work on a new version of Suspect to add Higgs boson mass
- Impact of pixel dead modules on b-tagging performance was studied (Authorship done)
- SUSY EW search for $\widetilde{\chi_1^{\mp}} \widetilde{\chi_2^{0}} \longrightarrow$ W+h+MET could be the key for SUSY production at LHC Run 2

If I have ever made any valuable discoveries, it has been owing more to patient attention, than to any other talent.

Isaac Newton, mathematician & physicist (1642 - 1727)

Thank you for your attention!

Backup

Nice features of SUSY:

Solving hierarchy problem: SUSY contributions to Higgs mass cancel SM contributions fix its mass to 125 GeV Atoms **Provides Dark Matter candidate** 4.9% Dark Lightest SUSY particle (LSP) can be stable and only 26,8% Matter weakly interacting Dark Energy 68,3% **Unification of gauge couplings** New particle content changes running of coupling 1/a $1/\alpha_i$ SM SUSY 60 60 $1/\alpha$, $1/\alpha$, **Connection of gravity and gauge symmetries** Some arguments are most convincing for SUSY 40 40 $1/\alpha_2$ particles at ~TeV scale 1/0 20 20 α $1/\alpha_{2}$ 0 n 5 15 0 5 15 0 10 10 log10(Q/GeV) log10(Q/GeV)