# **B-tagging in ATLAS Experiment**

# **Changqiao LI**<sup>[1][2]</sup>

[1]University of Science and Technology of China[2]Laboratoire de Physique Nucléaire et de Hautes Energies





# About me

- Chang-qiao ("qiao" pronounced similar like "ciao")
- Co-Ph.D. of LPNHE and USTC(China)
- Work on the ATLAS Experiment
- Qualification work:
  - B-tagging calibration with Tag-and-Probe Method
- Thesis topic:
  - SM VH(→bb) analysis
    (Introduced in the next talk by Charles)

# What is B-tagging of jet?



- Identification of jets originating from b-quarks
- Plays a vital role in many ATLAS analysis:
  - Higgs→b-quarks
  - top physics
  - search for new physics
- Hadrons containing bottom quarks have sufficient lifetime that they travel some distance before decaying

# How to tag?



Tagging algorithms:

- impact parameter-based (IP)
- inclusive secondary vertex reconstruction (SV)
- decay chain multi-vertex reconstruction (JetFitter)
- combination of above in a multivariate discriminant (MV)

Procedure:

- 1. Select a jet
- Match tracks by ΔR matching
- 3. Build vertices
- 4. compute discriminant with:
  - track-based variables associated with the jet
  - large mass
  - high decay multiplicity

# How to calibrate b-tagging?

- Using dileptonic ttbar events
- b-jet calibration method:



$$\kappa^{data/sim}_{\epsilon_j} = \frac{\epsilon^{data}_j}{\epsilon^{sim}_j}$$

- ttbar Probability Distribution Function (PDF) method: Measure the b-jet tag weight distribution from a Maximum Likelihood fit in eµ+2/3 jets or ee/µµ+2/3 jets
- ttbar tag-and-probe method: Measure the b-jet tag efficiency by subtracting the noneb-jets contamination in probe jets from ttbar in eµ+2 jets
- Systematics:
  - Detector related systematics
  - MC modelling: matrix element, hadronisation, showering
  - MC statistical uncertainty



### Probability Distribution Function

- Use a likelihood formalism which exploits per event jet flavour correlations
  - Extract b-jet tagging efficiency from data in each jet pt bin
  - Large gain in precision when compared to determining efficiency from individual jets

Likelihood for 2 jet case:

$$\begin{aligned} \mathcal{L}(p_{T,1}, p_{T,2}, w_1, w_2) = & [f_{bb} \mathcal{P}_{bb}(p_{T,1}, p_{T,2}) \mathcal{P}_b(w_1 | p_{T,1}) \mathcal{P}_b(w_2 | p_{T,2}) \\ &+ f_{bj} \mathcal{P}_{bj}(p_{T,1}, p_{T,2}) \mathcal{P}_b(w_1 | p_{T,1}) \mathcal{P}_j(w_2 | p_{T,2}) \\ &+ f_{jj} \mathcal{P}_j(p_{T,1}, p_{T,2}) \mathcal{P}_j(w_1 | p_{T,1}) \mathcal{P}_j(w_2 | p_{T,2}) \\ &+ 1 \leftrightarrow 2]/2, \end{aligned}$$



2D PDFs for jets of flavour f1, f2 to have pT,1, pT,2

PDFs for b-tagging discriminant for b-jets (from data) and non-b-jets (MC)

Flavour fractions in 2-jet case

# Tag-and-Probe

- Using eµ+2 jets:
  - tagging requirement: tag weight passing tagging working point
  - 1tag events: non tagged jet defined as probe jet
  - 2tag events: both jets defined as probe jets

Step 1 Non-*t*t events are subtracted:

$$\varepsilon_{data}^{Uncorr} = \frac{N_{data}^{pass} - N_{non-t\bar{t}}^{pass}}{N_{data} - N_{non-t\bar{t}}}$$

Step 2

Non b-labelled probes in  $t\bar{t}$  events are subtracted, based on the b-labelled jet fraction  $f_b^{t\bar{t} MC}$  in  $t\bar{t}$  and efficiency for non b-labelled jets in  $t\bar{t} \, \varepsilon_{non-b}^{t\bar{t} MC}$ :

$$\mathbf{\varepsilon}_{data} = \frac{\mathbf{\varepsilon}_{data}^{Uncorr} - (1 - f_b^{t\bar{t}\ MC}) \times \mathbf{\varepsilon}_{non-b}^{t\bar{t}\ MC}}{f_b^{t\bar{t}\ MC}}$$

# Tag-and-Probe

#### AntiBL BDT



mva cut 0.051 0.037 0.021 0.003 -0.019 -0.043 -0.073

# Tag-and-Probe

# BDT cut effect and optimisation

Comparison across MVA cuts at 77 WP of Calo Jets Calibration



#### B-jets purity in ttbar

#### Total uncertainty in lowest pt bin

Comparison across MVA cuts at 77 WP of Calo Jets Calibration of total in 1 ptbin



### Comparison with PDF method

Comparison across MVA cuts at 77 WP of Calo Jets Calibration



### Summary

- Identification of jets originating from b-quarks is very important for many analysis in ATLAS
- Three basic algorithms are used to perform b-jet tagging
- To achieve a better discrimination than any of the basic algorithms can achieve individually, a Boosted Decisions Tree (BDT) algorithm is employed. It combines the outputs of the basic taggers.
- Introduce ttbar PDF method and Tag-and-Probe methods.
- Tag-and-Probe: The worst uncertainty is in the lowest jet pt bin and smaller than 10%, for intermediate jet pt bins, it's smaller than 5%.
- Both methods gives compatible calibration results.

# BACKUP

### Backup

ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring and the y-axis points upwards. Cylindrical coordinates  $(r,\phi)$  are used in the transverse plane, being  $\phi$  the azimuthal angle around the z-axis. The pseudo-rapidity is defined in terms of the polar angle  $\theta$  as  $\eta = -\ln \tan(\theta/2)$  while  $\Delta R^2 = \sqrt{\Delta \eta^2 + \Delta \phi^2}$ .

$$\chi^{2}(\vec{r}) = \sum_{i=1}^{N_{trk}} (\vec{r} - \vec{r}_{i}(\hat{\phi}_{p,i}))^{T} \text{COV}_{3\times3,i}^{-1}(\hat{\phi}_{p,i})(\vec{r} - \vec{r}_{i}(\hat{\phi}_{p,i}))$$
(5.4)

The easiest way to estimate the vertex position  $\vec{r}$  and its related error is to minimise this  $\chi^2$  function numerically. The auxiliary parameters  $\vec{\phi}_p$  can be dealt with by repeating the fit again in case some of the initial parameters  $\vec{\phi}_p$  correspond to positions along the tracks trajectories which are significantly displaced with respect to the final estimated vertex position  $\vec{r}$ .



### (Tracks') Impact parameter-based



The track selection:

- track pT above 1 GeV
- ld0l<1mm lz0sinθl<1.5mm
- silicon hits requirements

Probability density functions (PDF) obtained from reference histograms for IP significances: For a jet, given associate tracks:

- Separated into exclusive categories depending on the hit pattern
- In each category, build PDF for jet-flavour hypothesis (b,c,light)

 $P_f = \prod_{\text{trk}} \mathcal{L}_f(S_{d_0}, S_{z_0}, \text{grade})$ with  $f \in \{b, c, \text{light}\}$ 

- Transverse impact parameter significance, d0/σd0
- Longitudinal impact parameter significance, z0\*sinθ /σ(z0sinθ)
- A log-likelihood ratio (LLR) discriminant is computed as the sum of the per-track contributions,( N is the number of tracks of jet)

$$\sum_{i=1}^{N} \frac{\log p_b}{\log p_u}$$

# Inclusive secondary vertex reconstruction



| m(SV)               | Invariant mass of tracks at the SV assuming $\pi$        |
|---------------------|----------------------------------------------------------|
|                     | masses                                                   |
| $f_E(SV)$           | Fraction of the charged jet energy in the SV             |
| $N_{TrkAtVtx}(SV)$  | Number of tracks used in the SV                          |
| $N_{2TrkVtx}(SV)$   | Number of two track vertex candidates                    |
| $L_{xy}(SV)$        | Transverse distance between the PV and the SVs           |
| $L_{xyz}(SV)$       | Distance between the PV and the SVs                      |
| $S_{xyz}(SV)$       | Distance between the PV and SVs divided by its           |
|                     | uncertainty                                              |
| $\Delta R(jet, SV)$ | $\Delta R$ between the jet axis and the direction of the |
| ~ /                 | SV relative to the PV                                    |

- All selected tracks used to form all possible two-track vertices.
- Selection perform on these twotrack vertex candidates.
- All tracks corresponding to the remaining accepted two-track vertices are used to determine a single secondary vertex.
- Calculate chi-2 of the vertex, if Prob(chi-2) is very small, remove the track with the highest contribution until Prob(chi-2) acceptable

# Decay chain multi-vertex reconstruction



|            | $N_{2TrkVtx}(JF)$                        | Number of 2-track vertex candidates                      |  |  |
|------------|------------------------------------------|----------------------------------------------------------|--|--|
| Jet Fitter | m(JF)                                    | Invariant mass of tracks from displaced vertices         |  |  |
|            |                                          | assuming $\pi$ masses                                    |  |  |
|            | $S_{xyz}(JF)$                            | Significance of the average distance between the         |  |  |
|            |                                          | PV and displaced vertices                                |  |  |
|            | $f_E(JF)$                                | Fraction of the charged jet energy in the SVs            |  |  |
|            | $N_{1-trkvertices}(JF)$                  | Number of displaced vertices with one track              |  |  |
|            | $N_{\geq 2-trkvertices}(JF)$             | Number of displaced vertices with more than one          |  |  |
|            |                                          | track                                                    |  |  |
|            | $N_{TrkAtVtx}(JF)$                       | Number of tracks from displaced vertices with at         |  |  |
|            |                                          | least two tracks                                         |  |  |
|            | $\Delta R(\vec{p}_{jet}, \vec{p}_{vtx})$ | $\Delta R$ between the jet axis and the vectorial sum of |  |  |
|            |                                          | the momenta of all tracks attached to displaced          |  |  |
|            |                                          | vertices                                                 |  |  |

- Exploits the topological structure of weak b- and chadron decays inside the jet.
- Tries to reconstruct the full
  PV→ b → c-hadron decay
  chainwith the Kalman filter.
- Using similar variable as SV1.
- The variables left are used as input nodes in an artificial neural network.
- It has three output nodes, corresponding to the b-, cand light-flavour-jet hypotheses.

### Multivariate discriminant (default algorithm used for ATLAS)

- To achieve a better discrimination
- Combine IP, SV and JetFitter in a BDT
- Training settings: 1000 Trees, Max depth of 30, no cuts below 5% of sample





| BDT Cut Value | <i>b</i> -jet Efficiency [%] | c-jet Rejection | Light-jet Rejection | $\tau$ Rejection |
|---------------|------------------------------|-----------------|---------------------|------------------|
| 0.9349        | 60                           | 34              | 1538                | 184              |
| 0.8244        | 70                           | 12              | 381                 | 55               |
| 0.6459        | 77                           | 6               | 134                 | 22               |
| 0.1758        | 85                           | 3.1             | 33                  | 8.2              |

### Backup



|    |                                                                                 | Fractional contribution [%] |                |            |
|----|---------------------------------------------------------------------------------|-----------------------------|----------------|------------|
| #  | Category                                                                        | <i>b</i> -jets              | <i>c</i> -jets | light-jets |
| 0  | No hits in first two layers; expected hit in IBL and b-layer                    | 1.9                         | 2.0            | 1.9        |
| 1  | No hits in first two layers; expected hit in IBL and no expected hit in b-layer | 0.1                         | 0.1            | 0.1        |
| 2  | No hits in first two layers; no expected hit in IBL and expected hit in b-layer | 0.04                        | 0.04           | 0.04       |
| 3  | No hits in first two layers; no expected hit in IBL and b-layer                 | 0.03                        | 0.03           | 0.03       |
| 4  | No hit in IBL; expected hit in IBL                                              | 2.4                         | 2.3            | 2.1        |
| 5  | No hit in IBL; no expected hit in IBL                                           | 1.0                         | 1.0            | 0.9        |
| 6  | No hit in b-layer; expected hit in b-layer                                      | 0.5                         | 0.5            | 0.5        |
| 7  | No hit in b-layer; no expected hit in b-layer                                   | 2.4                         | 2.4            | 2.2        |
| 8  | Shared hit in both IBL and b-layer                                              | 0.01                        | 0.01           | 0.03       |
| 9  | At least one <i>shared</i> pixel hits                                           | 2.0                         | 1.7            | 1.5        |
| 10 | Two or more <i>shared</i> SCT hits                                              | 3.2                         | 3.0            | 2.7        |
| 11 | Split hits in both IBL and b-layer                                              | 1.0                         | 0.87           | 0.6        |
| 12 | Split pixel hit                                                                 | 1.8                         | 1.4            | 0.9        |
| 13 | Good                                                                            | 83.6                        | 84.8           | 86.4       |

Table 1: Description of the track categories used by IP2D and IP3D together with the fraction of tracks in each category for jets in  $t\bar{t}$  events. The order of the layers is explained in the text. The categories further down in the list can be more inclusive than the first ones because, when a category is not fulfilled, the next one is evaluated.

### Backup

To be reliable any *b*-tagging algorithm must be calibrated on data. To facilitate the calibration and to reduce the necessary amount of data the chosen variables have been transformed (for details see [12]):

- Invariant mass:  $M' = \frac{M}{M+1}$ ;
- Energy ratio:  $R' = R^{0.7}$ ;
- Number of good two-track secondary vertices:  $N' = \log N$ .

Due to the efficiency to reconstruct a secondary vertex inside a jet not reaching 100%, the probability density functions (PDF) of the vertex based variable have to contain a  $\delta$ -function [12].

$$PDF = (1 - \varepsilon) \cdot \delta(M', F', N') + \varepsilon \cdot ASH(M', F', N')$$

with  $\varepsilon$  being the efficiency to reconstruct a secondary vertex inside a jet. The continuous probability density function of the vertex variables is constructed from multidimensional calibration histograms using the ASH smoothing method [13].

Two slightly different taggers based on the *BTagVrtSec* algorithms are available in ATLAS, denoted *SV*1 and *SV*2. They use exactly the same variables but handle them in a different way. *SV*1 treats M' and R' jointly and adds N' as independent variable (2+1 decomposition), whereas *SV*2 uses joint three-dimensional probability density functions.