MODÈLE STANDARD ET BOSON DE HIGGS:

Une introduction

Nicolas Morange JRJC 2015 2016

En théorie (vue par un expérimentateur)

LE MODÈLE STANDARD

Une théorie pour décrire

- Tout le contenu en matière de l'univers...
- Toutes les interactions fondamentales...
- Leptons, quarks, bosons
- Spins, masses

Le modèle standard

Une théorie pour décrire

- Tout le contenu en matière de l'univers...
 - ... enfin presque
- Toutes les interactions fondamentales...
 - ... enfin presque
- Leptons, quarks, bosons
- Spins, masses

Une théorie quantique des champs

n------

The little groups SO(2, 1) and SO(3, 1) for $p^2 > 0$ and $p^{\mu} = 0$ have no non-trivial finite-dimensional unitary representations, so if there are any states with a given momentum p^{μ} with $p^2 > 0$ or $p^{\mu} = 0$ that transform non-trivially under the little group,

L'IMPORTANCE DES SYMÉTRIES

- Relation symétries ⇔ lois de conservation
- Invariance de Lorentz
- Symétries de jauge
- Symétries exactes ou brisées

L'IMPORTANCE DES SYMÉTRIES

- Relation symétries ⇔ lois de conservation
- Invariance de Lorentz
- Symétries de jauge
- Symétries exactes ou brisées

ATLAS

- Formulation lagrangienne
- Contrainte par les symétries
 - Aucune masse sauf celle du Higgs
 - 27 paramètres libres
- Contient la QCD et la théorie EW
- Renormalisable
- Calculs par diagrammes de Feynman

- Formulation lagrangienne
- Contrainte par les symétries
 - Aucune masse sauf celle du Higgs
 - 27 paramètres libres
- Contient la QCD et la théorie EW
- Renormalisable
- Calculs par diagrammes de Feynman
- Tient sur un t-shirt moche

Une théorie élégante

- Formulation lagrang
- Contrainte par les sy
 - Aucune masse sa
 - 27 paramètres lib
- Contient la OCD et la
- Renormalisable
- Calculs par diagram

 $\frac{1}{2}ig_s^2(\bar{q}_i^{\sigma}\gamma^{\mu}q_i^{\sigma})g_{\mu}^a + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_{\mu}\bar{G}^a G^b g_{\mu}^c - \partial_{\nu}W_{\mu}^+\partial_{\nu}W_{\mu}^- M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{c^{2}} + \frac{1}{2}M\phi^{0}\phi^{0} - \frac{1}{2}M$ $\frac{2M}{a}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{a^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu - \phi^+_\mu)]$ $W^+_{\nu}W^-_{\mu}) - Z^0_{\nu}(W^+_{\mu}\partial_{\nu}W^-_{\mu} - W^-_{\mu}\partial^{\nu}_{\nu}W^+_{\mu}) + Z^0_{\mu}(W^+_{\nu}\partial_{\nu}W^-_{\mu} - W^-_{\mu})$ $W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{+}W_{\mu}^{-})]$ $W^{-}_{\mu}\partial_{\nu}W^{+}_{\mu}) + A_{\mu}(W^{+}_{\nu}\partial_{\nu}W^{-}_{\mu} - W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})] - \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\mu}W^{+}_{\nu}W^{-}_{\nu} +$ $\frac{1}{2}g^2W^+_{\mu}W^-_{\nu}W^+_{\mu}W^-_{\nu} + g^2c^2_w(Z^0_{\mu}W^+_{\mu}Z^0_{\nu}W^-_{\nu} - Z^0_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}) +$ $g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\mu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-})]$ $W_{\mu}^{+}W_{\mu}^{-}$ - $2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}$ - $g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] \frac{1}{2}g^2\alpha_h[H^4+(\phi^0)^4+4(\phi^+\phi^-)^2+4(\phi^0)^2\phi^+\phi^-+4H^2\phi^+\phi^-+2(\phi^0)^2H^2]$ $gMW^+_{\mu}W^-_{\mu}H - \frac{1}{2}g\frac{M}{c^2}Z^0_{\mu}Z^0_{\mu}H - \frac{1}{2}ig[W^+_{\mu}(\phi^0\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^0) W^{-}_{\mu}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})]^{+}_{+} \frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H) - W^{-}_{\mu}(H\partial_{\mu}\phi^{+} - \phi^{-}\partial_{\mu}H)]^{+}_{+}$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g \frac{1}{c}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig \frac{s^{2}_{\mu}}{c_{\mu}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) +$ $igs_w MA_{\mu}(W^+_{\mu}\phi^- - W^-_{\mu}\phi^+) - ig \frac{1-2c_w^2}{2c_w}Z^0_{\mu}(\phi^+\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^+) +$ $igs_wA_{\mu}(\phi^+\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^+) - \frac{1}{4}g^2W^+_{\mu}W^-_{\mu}[H^2 + (\phi^0)^2 + 2\phi^+\phi^-] - \frac{1}{4}g^2W^+_{\mu}[H^2 + 2\phi^+] - \frac{1}{4}g^2W^+_{\mu}[H^2 + 2\phi^+] - \frac{1}{4}g^2W^+_{\mu}[H^2 +$ $\frac{1}{4}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu [H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-] - \frac{1}{2}g^2 \frac{s^2_w}{c} Z^0_\mu \phi^0 (W^+_\mu \phi^- + \phi^-)^2 \phi^+ \phi^-]$ $W^{-}_{\mu}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{\mu}^{2}}{\sigma}Z^{0}_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-} +$ $W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{\mu}}{c_{\mu}}(2c_{w}^{2} - 1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - G_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-})$ $q^1 s^2_{w} A_{\mu} A_{\nu} \phi^+ \phi^- - \bar{e}^{\lambda} (\gamma \partial + m^{\lambda}_{e}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}^{\lambda}_i (\gamma \partial + m^{\lambda}_{e}) u^{\lambda}_i \overline{d}_{i}^{\lambda}(\gamma \partial + m_{d}^{\lambda})d_{i}^{\lambda} + igs_{w}A_{\mu}[-(\overline{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\overline{u}_{i}^{\lambda}\gamma^{\mu}u_{i}^{\lambda}) - \frac{1}{3}(\overline{d}_{i}^{\lambda}\gamma^{\mu}d_{i}^{\lambda})] +$ $\frac{ig}{is}Z_{\mu}^{0}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2}-1-\gamma^{5})e^{\lambda}) + (\bar{u}_{i}^{\lambda}\gamma^{\mu}(\frac{4}{2}s_{w}^{2}-1-\gamma^{5})e^{\lambda})]$ • Tient sur un t-shirt | $1 - \gamma^5 u_j^{\lambda}$ + $(\bar{d}_j^{\lambda} \gamma^{\mu} (1 - \frac{8}{3} s_w^2 - \gamma^5) d_j^{\lambda})$] + $\frac{ig}{2\sqrt{2}} W_{\mu}^+ [(\bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^5) k^3) + (\bar{d}_j^{\lambda} \gamma^{\mu} (1 - \frac{8}{3} s_w^2 - \gamma^5) d_j^{\lambda})$ $(\bar{u}_{i}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})C_{\lambda\kappa}d_{i}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})\nu^{\lambda}) + (\bar{d}_{i}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1 + \gamma^{5})\nu^{\lambda})]$ $\gamma^{5}(u_{i}^{\lambda})] + \frac{ig}{2\sqrt{2}} \frac{m_{\lambda}^{\lambda}}{M} \left[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right] \frac{g}{2}\frac{m_{\epsilon}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{i}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{i}^{\kappa}) +$ $m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa}] + \frac{ig}{2M_s/2}\phi^{-}[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa})]$ $\gamma^{5}u_{i}^{\kappa} = -\frac{g}{2}\frac{m_{\nu}^{\lambda}}{M}H(\bar{u}_{i}^{\lambda}u_{i}^{\lambda}) - \frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}H(\bar{d}_{i}^{\lambda}d_{i}^{\lambda}) + \frac{ig}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{u}_{i}^{\lambda}\gamma^{5}u_{i}^{\lambda}) \frac{ig}{d} \frac{m_{\lambda}^2}{d} \phi^0(\bar{d}_i^{\lambda} \gamma^5 d_i^{\lambda}) + \bar{X}^+ (\partial^2 - M^2) X^+ + \bar{X}^- (\partial^2 - M^2) X^- + \bar{X}^0 (\partial^2 - M^2) X^ \frac{\hat{M}^2}{\sigma^2}$ $X^0 + \tilde{Y}\partial^2 Y + igc_w W^+_\mu (\partial_\mu \tilde{X}^0 X^- - \partial_\mu \tilde{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \tilde{Y} X^- - \partial_\mu \tilde{X}^+ X^0)$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{X}^{0}X^{+}))$ $\partial_{\mu}\bar{Y}X^{+}$) + $igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-})$ + $igs_{w}A^{-}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-})$ $\partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c^{2}}\bar{X}^{0}X^{0}H] +$ $\frac{1-2c_{w}^{2}}{2c}igM[\bar{X}^{+}X^{0}\phi^{+}-\bar{X}^{-}X^{0}\phi^{-}]+\frac{1}{2c}igM[\bar{X}^{0}X^{-}\phi^{+}-\bar{X}^{0}X^{+}\phi^{-}]+$ $igMs_w[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] + \frac{1}{2}igM[\bar{X}^+X^+\phi^0 - \bar{X}^-X^-\phi^0]$

 $-\frac{1}{2}\partial_{\nu}g^a_{\mu}\partial_{\nu}g^a_{\mu} - g_s f^{abc}\partial_{\mu}g^a_{\nu}g^b_{\nu}g^c_{\nu} - \frac{1}{4}g^2_s f^{abc}f^{ade}g^b_{\mu}g^c_{\nu}g^d_{\mu}g^e_{\nu} +$

Brisure de symétrie

- Groupe de jauge SU(2) ⊗ U(1)
- Champ de Higgs: doublet de champs scalaires complexes, potentiel $V(\phi^{\dagger}\phi) = -m^2 \phi^{\dagger}\phi + \lambda (\phi^{\dagger}\phi)^2$
 - \Rightarrow VEV non-nulle
- Brisure de symétrie
 - \Rightarrow Bosons W, Z, et γ
 - ⇒ Masses des bosons
 - ⇒ Degré de liberté restant: boson de Higgs

Masses des fermions

- Termes de Yukawa: $y_i \bar{\psi} \phi \psi$
- Masses grâce à la vev
- Hiérarchie de masse ⇒ Hiérarchie de couplages

Prédictions du MS

- À m_H fixé, tous les couplages sont calculables
- Modes de production
- Désintégrations

Au LHC

- Désintégration γγ: boucles de top et W
- Production principale fusion de gluons:

• Connu à NNNLO !

LA QCD

Théorie

- Groupe de jauge SU(3), interaction forte
- 8 gluons (self-interaction)
- Interagit avec les quarks
- Liberté asymptotique
- Confinement

Phénoménomogie

- États observables: hadrons (neutres de couleur)
- Jets
 - Conséquence des propriétés de la QCD
 - Difficile d'avoir une définition saine pour les théoriciens et les expérimentateurs
 - Algorithmes, anti-kT: infrared-safe, collinear-safe

Événement dijet, $m_{jj}=8.8\,{
m TeV}$

- hard scattering
- (QED) initial/final state radiation
- partonic decays, e.g. $t \rightarrow bW$
- parton shower evolution
- nonperturbative gluon splitting
- colour singlets
- colourless clusters
- cluster fission
- cluster \rightarrow hadrons
- hadronic decays

UNE COLLISION EN VRAI: pp

- hard scattering
- (QED) initial/final state radiation
- parton shower evolution
- nonperturbative gluon splitting
- colour singlets
- colourless clusters
- cluster fission
- cluster \rightarrow hadrons
- hadronic decays

and in addition

- + backward parton evolution
- + soft (possibly not-so-soft) underlying event

EN PRATIQUE

EN PRATIQUE

N. Morange (LAL Orsay)

LE LHC: LA MÊME CHOSE, À L'ÉCHELLE

LE LHC: LA MÊME CHOSE, À L'ÉCHELLE

Le LHC:

- Collisionneur p-p de 27 km de circonférence situé au CERN
- Collisions:
 - Tevatron: 10 fb⁻¹ en 10 ans
 - 7 TeV (2010,2011): $\sim 5 \, {\rm fb}^{-1}$
 - 8 TeV (2012): $\sim 20\,\mathrm{fb}^{-1}$
 - 13 TeV (2015-): \sim 40 fb⁻¹
 - Objectif: 100 fb⁻¹ d'ici 2019, 300 fb⁻¹ d'ici 2023, puis 3000 fb⁻¹
- Espacement entre paquets:
 - 50 ns (2010-2012)
 - 25 ns (2015-)
 - ⇒ Taux de collision 40 MHz
- Empilement
 - À chaque croisement de faisceau, multiples interactions *pp*
 - 20-40 jusqu'à présent, 200 dans le futur

Quatre expériences majeures:

ALICE, CMS, LHCb, et ATLAS

LE DÉTECTEUR ATLAS

HOUSE ATLAS

(OUR I.B.L. IS)

BOWING STRONG

LE DÉTECTEUR ATLAS

N. Morange (LAL Orsay)

LE DÉTECTEUR CMS

Des montagnes de W et Z

- Grandes sections efficaces (nb)
- Très riche programme de mesures de précision
- Sections efficaces différentielles, mesures de sin θ_W, masse du W, contraintes sur les PDF...

Des bruits de fond omniprésents

- Bruit de fond dans énormément de canaux
- Difficultés théoriques: V+beaucoup de jets ; V+saveurs lourdes
- Par ex VH(bb)

Les chandelles standard du LHC

- Grande pureté, haute statistique, propriétés bien connues
- Outils idéaux pour mesurer les performances des détecteurs et de la reconstruction:
 - Échelles d'énergie et résolution des leptons
 - Efficacité de reconstruction et d'identification des leptons
 - Énergie transverse manquante
- Présentations de Kevin et Ana Elena

Le LHC: une machine tip-top

- Plus de tops produits en quelques mois en 2011 que dans toute la vie du Tevatron
- Nombreux résultats sur section efficace, masse, propriétés diverses

Le top comme bruit de fond

- Bruit de fond à énormément d'analyses
- Désintégrations hadroniques, leptoniques, jets de *b*...
- Mesures de processus rares, comme ttZ, ttbb...

Une nouvelle chandelle standard !

- Calibration de techniques avec des objets boostés (W hadronique)
- Étalonnage de l'étiquetage des jets b
- Présentation de Changqiao

BOSON DE HIGGS: DÉCOUVERTE

- Découverte juillet 2012 avec \sim 10 fb⁻¹ de données
- Principalement $H \rightarrow ZZ \rightarrow 4\ell$ et $H \rightarrow \gamma\gamma$
- Début d'un vaste programme de recherche

PHYSIQUE DU HIGGS: UNE QUESTION DE POIDS

- Mesure de masse combinée déjà précise à 2 pour mille !
- Impact des systématiques sera d'autant plus grand au Run2
- Importance de la calibration des leptons et photons

PHYSIQUE DU HIGGS: COUPLAGES I

L'héritage du Run 1

- Couplages au W, Z, τ mesurés directement
- Couplage au top mesuré indirectement

Mesures de précision

- γγ et 4 leptons: vaisseaux amiraux de la physique du Higgs
- Mesures des couplages (modes de production)
- Masse, Spin/CP
- Recherche de couplages anomaux
- Déjà plus de Higgs produits pour ICHEP 2016 que pour tout le Run 1 !
- Quelques résultats déjà compétitifs
- Présentation de Huijun

PHYSIQUE DU HIGGS: COUPLAGES II

125 GeV: une masse "magique"

- Beaucoup de canaux ouverts !
- Mais certains plus durs que d'autres...

Défis pour surpasser le Run 1

- ττ, WW étaient limités par les systématiques au Run 1
- Beaucoup de travail pour améliorer la précision
- Pas encore d'analyse 13 TeV publiques !

La hype du Run II

- Mises en évidence attendues dans l'année (?)
- Couplage au b: VH(bb), ttH(bb)
- Présentation de Charles
- Couplage au top (mesure directe): ttH, avec $H \rightarrow bb, H \rightarrow multi-leptons, H \rightarrow \gamma\gamma$
- Présentations de Kevin, Ana Elena, Robert
- Tous des canaux très difficiles ! Estimation des fonds et contrôle des systématiques cruciaux !

Uncertainty Source	$\Delta \mu$	
$t\bar{t} + \ge 1b$ modelling	+0.34	-0.33
Jet flavour tagging	+0.19	-0.19
Background model statistics	+0.18	-0.18
$t\bar{t}+ \ge 1c$ modelling	+0.17	-0.17
Jet energy scale and resolution	+0.18	-0.18
$t\bar{t}H$ modelling	+0.20	-0.13
$t\bar{t}$ +light modelling	+0.14	-0.14
Other background modelling	+0.16	-0.15
Fake lepton uncertainties	+0.11	-0.12
Jet-vertex association, pileup modelling	+0.09	-0.09
Luminosity	+0.09	-0.09
$t\bar{t}Z$ modelling	+0.08	-0.07
Light lepton (e, μ) , photon, and τ ID, isolation, trigger	+0.04	-0.04
Total systematic uncertainty	+0.57	-0.54
$t\bar{t}+ \ge 1b$ normalisation	+0.24	-0.24
$t\bar{t}+ \ge 1c$ normalisation	+0.11	-0.11
Statistical uncertainty	+0.38	-0.38
Total uncertainty	+0.69	-0.66

Un très grand succès

- Extrêmement prédictif
- Extrêmement robuste
- Que ce soit en QCD ou dans le secteur électrofaible
- Le LHC permet des tests de précision

Physique du Higgs: un nouveau champ de recherche

- Mesures de précision des propriétés
- Détermination des couplages

CONCLUSION

