Data taking with the Liquid Argon
 Demonstrator for the Phase-I trigger readout
 electronics upgrade of the ATLAS experiment
 Studies on associated Higgs boson
 production with top quark pair
 Journées de Rencontre des Jeunes Chercheurs 2016

Robert Wolff

robert.wolff@cern.ch

5th December 2016

The LHC, the ATLAS experiment and my PhD

the LHC (Large Hadron Collider)

the ATLAS experiment

- discovery of the Higgs boson in 2012
- since 2015 proton-proton collisions with increased energy & luminosity (Run 2)
 - $ightarrow \,$ precisely study properties of Higgs boson
 - \rightarrow search for new physics
- PhD in ATLAS group of CPPM (Marseille) under supervision of Cristinel Diaconu and Emmanuel Monnier
 - → upgrade of the Liquid Argon Calorimeter (LAr) trigger readout (1st part)
 - \rightarrow analysis $t\bar{t}H \rightarrow$ leptons (2nd part)

The ATLAS Liquid Argon Calorimeter (LAr)

- LAr calorimeter : 182k channels
- Front End : 1600 Front End Boards
- Back End : 200 Readout Out Driver boards

Between Electromagnetic barrel and end-cap

measures precisely energy and position of electrons and photons

The LHC Forecast

■ increase of pile-up < µ > and luminosity
 ■ higher particle flux through detector

LAr Demonstrator analysis and studies on ttH production (JRJC 2016) (Robert Wolff, 5/12/2016)

Why does the trigger needs an upgrade?

- collisions with rate of 40 MHz
- Iimited level 1 trigger rate of \sim 20 kHz
- lepton trigger rates increase linearly with luminosity
- forward-jet and missing E_T trigger rates increase logarithmically
- $ightarrow \,$ increase trigger threshold
 - cuts out interesting physics!
- ightarrow improve trigger
 - e.g. higher granularity in LAr Calorimeter readout

Upgrade of the Liquid Argon Calorimeter

Liquid Argon Calorimeter upgrade (Phase-I, during 2019/20):

- increase of granularity in readout by factor 10 \rightarrow super cells
- add longitudinal shower information to the level 1 trigger input \rightarrow layers

The LAr Demonstrator

- installed in June 2014, covering a small area of the detector
 - ightarrow no disturbance of current system
 - digitisation of supercell pulses with 40 MHz
 - 2 digital boards, waiting for trigger level 1 accept to readout super cells
 - calibration and data-taking in 2015 and 2016

LAr Demonstrator analysis and studies on ttH production (JRJC 2016) (Robert Wolff, 5/12/2016)

ADC pulse measurement at the LAr Demonstrator

- measured quantity is ADC, digitized electronic signals
- readout only every 25 ns → red points
- measure points in between by delaying readout by steps of 1 ns

Calibration of the LAr Demonstrator

LAr Demonstrator analysis and studies on ttH production (JRJC 2016) (Robert Wolff, 5/12/2016)

LAr Demonstrator data taking in physics collisions

- data taking with proton-proton and heavy-ion collisions since 2015
 - see if there is any wrong behaviour
- collect data triggered in LAr Demonstrator region
- compare LAr Demonstrator readout and ATLAS main readout
 - matching of events uses L1ID, BCID and trigger type
- check comparison in event signature (*E*_T distribution):

- matched reconstructed objects in corresponding ATLAS event:
 - electrons (11.0, 5.6, 6.7 GeV)
 - photons (6.3, 4.8 GeV)

The LAr Demonstrator

- pulses measured in calibration and collisions
- first data taking promising
- plan to use optimal filtering constants in calibration and E_T measurement
- plan for early 2018 to have final prototype installed and running in end of Run 2

$t\bar{t}H$ with leptons in final state

- direct measurement of top Yukawa coupling to Higgs boson (y_t) via associated Higgs production with top quark pair
 - any deviation might be hint for new physics
- four main channels for final state targeting mainly H → WW* decay:
 - **2** same-sign light leptons, τ veto (2 ℓ ss)
 - 2 same-sign light leptons + 1 opposite-sign τ (2ℓss+1τ)
 - 3 light leptons with total charge ± 1 (3 ℓ)
 - 4 light leptons with total charge 0 (4ℓ)

• cross sections increase from $\sqrt{s} = 8$ to 13 TeV

	tŦH	VV	tŦW	tτ̄Ζ	tī
$\sigma^{8{ m TeV}}$	130 fb	8220 fb	232 fb	206 fb	253 pb
$\sigma^{\rm 13TeV}$	507 fb	14200 fb	601 fb	839 fb	831 pb
$f_{\sqrt{s}}$	3.9	1.7	2.6	4.1	3.3

 contribute to data preparation, validation and final fit

LAr Demonstrator analysis and studies on ttH production (JRJC 2016) (Robert Wolff, 5/12/2016)

Irreducible backgrounds (prompt light leptons):

- mainly *tt̄W*, *tt̄Z*, VV (di-boson) production
- rely on Monte Carlo (MC) simulation and theoretical uncertainties

Reducible backgrounds:

- have at least one lepton to be non-prompt or charge mis-reconstructed
- based on data-driven estimates
- Rare backgrounds:
 - t̄tWW, tH, tZ, t̄tt̄, VVV, WtZ
 - rely on MC estimates and theoretical uncertainties

Validation regions for irreducible backgrounds

- validate, that relying on MC simulation is appropriate
- therefore construct validation regions close to signal regions

good agreement, but poor statistics with 13.2 fb⁻¹
 in 2015 + 2016 total collected 36.5 fb⁻¹→ almost factor 3

Reducible backgrounds, data-driven estimates

Electron charge mis-reconstruction

- two main sources:
 - Hard Bremsstrahlung
 - $({\it e^-} \rightarrow {\it e^-} \gamma^* \rightarrow {\it e^+} {\it e^-} {\it e^-})$

- slightly curved track for high-p_T electrons
- Probability estimated from e[±] of Z boson decay using Likelihood method

Non-prompt leptons background

estimated using transfer factors

$$\theta_{\ell} = \frac{A}{B} = \frac{N_{\ell\ell}^{\text{Data}} - N_{\ell\ell}^{\text{Prompt}} - N_{\ell\ell}^{\text{QMisld}}}{N_{\ell\ell}^{\text{Data}} - N_{\ell\ell}^{\text{Prompt}} - N_{\ell\ell}^{\text{QMisld MC}}}$$

$$\mathsf{N}^{\mathsf{Non-prompt}}(\mathsf{SR}) = heta_\ell \cdot \mathsf{N}(\mathsf{CR})$$

ll

B

CR

 \leq 4 jets > 4 jets

theoretical uncertainties on prompt backgrounds

- on cross sections of signal ($t\bar{t}H$) and prompt backgrounds \sim 10 %
- acceptance for QCD scale, PDF and shower variations from MC studies

uncertainties on data-driven background estimates

- charge mis-reconstruction uncertainty anti-correlated
- Non-prompt leptons uncertainties correlated among different channels
- combined statistical uncertainties (control region size) and systematic uncertainties from MC closure test and subtracted charge mis-reconstruction

Detector retated uncertainties

- luminosity measurement (overall scale)
- pile-up modelling (MC to data discrepancy)
- lepton scalefactors for reconstruction, isolation and triggering (MC to data discrepancy)
- jet energy scale (19 nuisance parameters)
- jet vertex association
- jet b-tagging (24 nuisance parameters)

Fit in $t\bar{t}H \rightarrow leptons$

- profile likelihood ratio fit using RooFit
- a parameter of interest (POI): signal strength $\mu = \frac{\text{data-SM backgrounds}}{\text{SM }t\overline{t}H}$ prediction
- nuisance parameters (NPs): theoretical and experimental systematics, systematics on data-driven fake estimates

measured significance of ~ 2.2 (expected 1.0)

Systematic uncertainties after the fit to data

dominating systematic uncertainties:

- detector-related:
 - 1 jet-vertex association
 - 5 pileup-modelling
 - 9,14 jet energy scale
 - 12 luminosity
- non-prompt estimates
 - 2 CR selection variation
 - 4,11 transfer factor for e and μ
 - 6 non-prompt estimate for $2\ell 1\tau_{had}$
- theoretical
 - 3 *t*tH scale acceptance
 - 7 tTH cross section
 - 8 *ttW* scale acceptance
 - 10 *t*tw cross section

measured significance of 2.8 (expected 1.8)

Conclusions and outlook

- successful data taking with Liquid Argon demonstrator in collisions of 2015 and 2016
 - plan to continue studying performance of future system
 - apply optimal filtering coefficients on physics pulses

- successful $t\bar{t}H \rightarrow$ multileptons analysis with published ICHEP conference note
- challenging next months:
 - improve fakes and charge mis-reconstruction measurements (MM, MVA)
 - MVA for event selection
 - shape fits?, signal region splitting?, control regions?
 - planned paper in summer 2017 with full 2015+2016 dataset

Huge effort to find evidence for tt H production (in combination)