Search for CP and T Violations in the Weak Semileptonic Λ_b and Λ_c^+ Decays with the LHCb Detector

Mohamad KOZEIHA JRJC 2016

December 11, 2016

Outline

motivation

- measure the polarization of the Λ_b^0 and Λ_c^+ .
- Test the TRV and the CPV in weak semileptonic decays.
- measure directly some important parameters for particle physics.
- full anguar distribution studies for different decay channels.
- New startegy for searching for TRV or CPV.

JRJC-2016	
LUCh dataa	

The LHCb detector is a single arm forward spectrometer.

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

$$\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_\mu}$$

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

$$\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_\mu}$$

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

$$\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}} \qquad \qquad \Lambda_c^+ \longrightarrow \Lambda \pi^+$$

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Phenomenological Study of the Weak Semilptonic Λ_b Decays ($\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$).

 Note that these particles decay via weak interactions due to the presence of the W-boson.

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Phenomenological Study of the Weak Semilptonic Λ_b Decays ($\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$).

 The presence of the neutrino results in a missing energy needed to be reconstructed.

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

- The presence of the neutrino results in a missing energy needed to be reconstructed.
- Flight distance and other kinematics determine Λ_b momentum.

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

- The presence of the neutrino results in a missing energy needed to be reconstructed.
- Flight distance and other kinematics determine Λ_b momentum.

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Phenomenological Study of the Weak Semilptonic Λ_b Decays ($\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$).

- The presence of the neutrino results in a missing energy needed to be reconstructed.
- Flight distance and other kinematics determine Λ_b momentum.

The Λ_b momentum up to a two-fold ambiguity is given by:

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Phenomenological Study of the Weak Semilptonic Λ_b Decays ($\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$).

- The presence of the neutrino results in a missing energy needed to be reconstructed.
- Flight distance and other kinematics determine Λ_b momentum.

 The Λ_b momentum up to a two-fold ambiguity is given by:

$$\begin{split} \left[\left(\frac{\hat{p}[\Lambda_b] \cdot \vec{p}[\Lambda_c \mu]}{E[\Lambda_c \mu]} \right)^2 - 1 \right] p[\Lambda_b]^2 + \left[(m[\Lambda_b]^2 + m[\Lambda_c \mu]^2) \frac{\hat{p}[\Lambda_b] \cdot \vec{p}[\Lambda_c \mu]}{E^2[\Lambda_c \mu]} \right] p[\Lambda_b] \\ + \left[\left(\frac{(m[\Lambda_b]^2 + m[\Lambda_c \mu]^2)}{2E[\Lambda_c \mu]} \right)^2 - m[\Lambda_b]^2 \right] = 0 \end{split}$$

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Study of the T odd observables

Test TRV \longrightarrow search for T odd observables (change sign under time reversal symmetry).we have two types:

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Study of the T odd observables

Test TRV \longrightarrow search for T odd observables (change sign under time reversal symmetry).we have two types:

• The special angle (sine and cosine) to be defined later.

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Study of the T odd observables

Test TRV \longrightarrow search for T odd observables (change sign under time reversal symmetry).we have two types:

- The special angle (sine and cosine) to be defined later.
- The polarization of the resonating particles.

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Study of the T odd observables

Test TRV \longrightarrow search for T odd observables (change sign under time reversal symmetry).we have two types:

- The special angle (sine and cosine) to be defined later.
- The polarization of the resonating particles.
- \longrightarrow 4 posibilties of testing TRV in one event.

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Definition of the Observable: The Special Angles

As illustrated in the figure below, consider the normal vectors to the production plane of Λ_c^+ and the W-boson :

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Definition of the Observable: The Special Angles

As illustrated in the figure below, consider the normal vectors to the production plane of Λ_c^+ and the W-boson :

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Definition of the Observable: The Special Angles

As illustrated in the figure below, consider the normal vectors to the production plane of Λ_c^+ and the W-boson :

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Definition of the Observable

Vectors above are even by T symmetry but the cosine and the sine of their azimutal angles are odd by T and written as a mixed product of the polar vectors:

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Definition of the Observable

Vectors above are even by T symmetry but the cosine and the sine of their azimutal angles are odd by T and written as a mixed product of the polar vectors:

special angles

$$\cos\phi_{(n_{\Lambda_c^+})} = \overrightarrow{e_Y} \cdot \frac{\overrightarrow{e_Z} \times \overrightarrow{n_{\Lambda_c^+}}}{|\overrightarrow{e_Z} \times \overrightarrow{n_{\Lambda_c^+}}|}, \quad \sin\phi_{(n_{\Lambda_c^+})} = \overrightarrow{e_Z} \cdot \frac{\overrightarrow{e_X} \times \overrightarrow{n_{\Lambda_c^+}}}{|\overrightarrow{e_Z} \times \overrightarrow{n_{\Lambda_c^+}}|}$$
(2)

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Definition of the Observable

Vectors above are even by T symmetry but the cosine and the sine of their azimutal angles are odd by T and written as a mixed product of the polar vectors:

special angles

$$\cos\phi_{(n_{\Lambda_c^+})} = \overrightarrow{e_Y} \cdot \frac{\overrightarrow{e_Z} \times \overrightarrow{n_{\Lambda_c^+}}}{|\overrightarrow{e_Z} \times \overrightarrow{n_{\Lambda_c^+}}|}, \quad \sin\phi_{(n_{\Lambda_c^+})} = \overrightarrow{e_Z} \cdot \frac{\overrightarrow{e_X} \times \overrightarrow{n_{\Lambda_c^+}}}{|\overrightarrow{e_Z} \times \overrightarrow{n_{\Lambda_c^+}}|}$$
(2)

These two quantities will be denoted as the Special angles. The relation 3 recalls the transformation by T of the vector base of the Transversity frame used in this decay.

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Definition of the Observable

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Definition of the Observable

$$\overrightarrow{e_{Z}} = \frac{\overrightarrow{e_{p1}} \times \overrightarrow{p_{\Lambda_{c}^{+}}}}{|\overrightarrow{e_{p1}} \times \overrightarrow{p_{\Lambda_{c}^{+}}}|} \to +\overrightarrow{e_{Z}}, \overrightarrow{e_{X}} = \frac{\overrightarrow{p_{p1}}}{|\overrightarrow{p_{p1}}|} \to -\overrightarrow{e_{X}}, \overrightarrow{e_{Y}} = \overrightarrow{e_{Z}} \times \overrightarrow{e_{X}} \to -\overrightarrow{e_{Y}}$$
(3)

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Definition of the Observable

$$\overrightarrow{e_{Z}} = \frac{\overrightarrow{e_{p1}} \times \overrightarrow{p_{\Lambda_{c}^{+}}}}{|\overrightarrow{e_{p1}} \times \overrightarrow{p_{\Lambda_{c}^{+}}}|} \to +\overrightarrow{e_{Z}}, \overrightarrow{e_{X}} = \frac{\overrightarrow{p_{p1}}}{|\overrightarrow{p_{p1}}|} \to -\overrightarrow{e_{X}}, \overrightarrow{e_{Y}} = \overrightarrow{e_{Z}} \times \overrightarrow{e_{X}} \to -\overrightarrow{e_{Y}}$$
(3)
Remark: the quantities $\cos \phi_{(n_{\Lambda_{c}^{+}})}$ and $\sin \phi_{(n_{\Lambda_{c}^{+}})}$ are constructed from the momentums. Since the momentums are odd by T and P, the special angles therefore change sign under these two symmetries.

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Polarization of the Intermediate Resonaces

 Λ_b^0 comes from strong interaction \longrightarrow its polarization can't be considered as a signature of Time Reversal Violation.

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Polarization of the Intermediate Resonaces

 Λ_b^0 comes from strong interaction \longrightarrow its polarization can't be considered as a signature of Time Reversal Violation. The polarization vectors of the Λ_c^+ and the w-boson seem to be more relevant.

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Polarization of the Intermediate Resonaces

 Λ_b^0 comes from strong interaction \longrightarrow its polarization can't be considered as a signature of Time Reversal Violation. The polarization vectors of the Λ_c^+ and the w-boson seem to be more relevant.

Decompose the polarization vector of these resonances, \rightarrow construct the helicity frames: $(\Lambda_c^+, \overrightarrow{e_{L1}}, \overrightarrow{e_{T1}}, \overrightarrow{e_{N1}})$ and $(W_{virtual}^-, \overrightarrow{e_{L2}}, \overrightarrow{e_{T2}}, \overrightarrow{e_{N2}})$.

Figure below, shows frames constructed starting from the Λ_b^0 transversity frame. Their vector bases are defined as follows:

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Polarization of the Intermediate Resonaces

$$\overrightarrow{e_{L1}} = \frac{\overrightarrow{p_{\Lambda_c^+}}}{|\overrightarrow{p_{\Lambda_c^+}}|}, \quad \overrightarrow{e_{N1}} = \frac{\overrightarrow{e_Z} \times \overrightarrow{e_{L1}}}{|\overrightarrow{e_Z} \times \overrightarrow{e_{L1}}|}, \quad \overrightarrow{e_{T1}} = \overrightarrow{e_{N1}} \times \overrightarrow{e_{L1}} \quad (4)$$

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Polarization of the Intermediate Resonaces

$$\overrightarrow{e_{L1}} = \frac{\overrightarrow{p_{\Lambda_c^+}}}{|\overrightarrow{p_{\Lambda_c^+}}|}, \quad \overrightarrow{e_{N1}} = \frac{\overrightarrow{e_Z} \times \overrightarrow{e_{L1}}}{|\overrightarrow{e_Z} \times \overrightarrow{e_{L1}}|}, \quad \overrightarrow{e_{T1}} = \overrightarrow{e_{N1}} \times \overrightarrow{e_{L1}} \quad (4)$$

Decay $\Lambda_b \longrightarrow \Lambda_c^+ \mu^- \bar{\nu_{\mu}}$ in search for TRV

Polarization of the Intermediate Resonaces

$$\overrightarrow{e_{L1}} = \frac{\overrightarrow{p_{\Lambda_c^+}}}{|\overrightarrow{p_{\Lambda_c^+}}|}, \quad \overrightarrow{e_{N1}} = \frac{\overrightarrow{e_Z} \times \overrightarrow{e_{L1}}}{|\overrightarrow{e_Z} \times \overrightarrow{e_{L1}}|}, \quad \overrightarrow{e_{T1}} = \overrightarrow{e_{N1}} \times \overrightarrow{e_{L1}}$$
(4)

$$\overrightarrow{e_{L2}} = \overrightarrow{\overrightarrow{p_{W_{virtual}}}}, \quad \overrightarrow{e_{N2}} = \overrightarrow{\overrightarrow{e_Z} \times \overrightarrow{e_{L2}}}, \quad \overrightarrow{e_{T2}} = \overrightarrow{e_{N2}} \times \overrightarrow{e_{L2}} \quad (5)$$

LHCB frame of the Λ_c^+

 Transversity frame from the Standard Laboratory frame.

$$\mathbf{e}_{Z} = \frac{\mathbf{e}_{z} \times \mathbf{p}_{\Lambda_{c}^{+}}}{|\mathbf{e}_{z} \times \mathbf{p}_{\Lambda_{c}^{+}}|}$$
$$\mathbf{e}_{X} = \hat{\mathbf{p}}_{p}(lab)$$
$$\mathbf{e}_{Y} = \mathbf{e}_{z} \times \mathbf{e}_{x}$$

LHCB frame of the Λ_c^+

 Transversity frame from the Standard Laboratory frame.

$$\mathbf{e}_{Z} = \frac{\mathbf{e}_{z} \times \mathbf{p}_{\Lambda_{c}^{+}}}{|\mathbf{e}_{z} \times \mathbf{p}_{\Lambda_{c}^{+}}|}$$
$$\mathbf{e}_{X} = \hat{\mathbf{p}}_{p}(lab)$$
$$\mathbf{e}_{Y} = \mathbf{e}_{z} \times \mathbf{e}_{x}$$

* Λ_c^+ Transversity rest frame: From Transversity frame by Lorentz Boost along $\mathbf{p}_{\Lambda_c^+}$

Decay $\Lambda_c^+ \longrightarrow \Lambda \pi^+$ CP violation

LHCB frame of the Λ_c^+

 Transversity frame from the Standard Laboratory frame.

$$\mathbf{e}_{Z} = \frac{\mathbf{e}_{Z} \times \mathbf{p}_{\Lambda_{C}^{+}}}{|\mathbf{e}_{Z} \times \mathbf{p}_{\Lambda_{C}^{+}}|}$$
$$\mathbf{e}_{X} = \hat{\mathbf{p}}_{p}(lab)$$
$$\mathbf{e}_{Y} = \mathbf{e}_{Z} \times \mathbf{e}_{X}$$

* Λ_c^+ Transversity rest frame: From Transversity frame by Lorentz Boost along $\mathbf{p}_{\Lambda_c^+}$

JRJC-2016 Decay $\Lambda_c^+ \longrightarrow \Lambda \pi^+$ CP violation

Phenomenological Study of the weak Λ_c^+ Decays

• Cascade decay
$$\Lambda_c^+ o \Lambda^0 \pi^+$$
 and $\Lambda^0 \longrightarrow {m p} \pi^-$

- Final states are p pi- pi+ mu nu, why ?
- It is a new channel to be studied.
- 2 pseudo scalar particles (spin 0) necessary for the angular equations.
- ∧_b comes from strong interactions → deduce its polarisation.

Decay $\Lambda_c^+ \longrightarrow \Lambda \pi^+$ CP violation

Phenomenological Study of the weak Λ_c^+ Decays

Polar angle of \wedge in \wedge^+_c rest frame:

Decay $\Lambda_c^+ \longrightarrow \Lambda \pi^+$ CP violation

Phenomenological Study of the weak Λ_c^+ Decays

Polar angle of \wedge in \wedge^+_c rest frame:

•
$$\frac{d\sigma}{d\cos\theta_{\Lambda}} \propto 1 + \alpha_{AS}^{\Lambda_c^+} P_Z^{\Lambda_c^+} \cos\theta_{\Lambda}$$

• $P_Z^{\Lambda_c^+}$ and $\alpha_{AS}^{\Lambda_c^+}$ are polarization and decay-asymmetry of Λ_c^+

Decay $\Lambda_c^+ \longrightarrow \Lambda \pi^+$ CP violation

Phenomenological Study of the weak Λ_c^+ Decays

Polar angle of \wedge in \wedge^+_c rest frame:

•
$$\frac{d\sigma}{d\cos\theta_{\Lambda}} \propto 1 + \alpha_{AS}^{\Lambda_c^+} P_Z^{\Lambda_c^+} \cos\theta_{\Lambda}$$

• $P_Z^{\Lambda_c^+}$ and $\alpha_{AS}^{\Lambda_c^+}$ are polarization and decay-asymmetry of Λ_c^+

Decay $\Lambda_c^+ \longrightarrow \Lambda \pi^+$ CP violation

Phenomenological Study of the weak Λ_c^+ Decays

Polar angle of proton in \wedge rest frame:

Decay $\Lambda_c^+ \longrightarrow \Lambda \pi^+$ CP violation

Phenomenological Study of the weak Λ_c^+ Decays

Polar angle of proton in \wedge rest frame:

•
$$\frac{d\sigma}{d\cos\theta_p} \propto 1 + \alpha_{AS}^{\Lambda_c^+} \alpha_{AS}^{\Lambda} \cos\theta_p$$

• P^{Λ^0} and $\alpha_{AS}^{\Lambda^0}$ are polarization and decay-asymmetry of Λ^0 where $P^{\Lambda^0} = \alpha_{AS}^{\Lambda^+_c}$

Decay $\Lambda_c^+ \longrightarrow \Lambda \pi^+$ CP violation

Phenomenological Study of the weak Λ_c^+ Decays

Polar angle of proton in \wedge rest frame:

•
$$\frac{d\sigma}{d\cos\theta_p} \propto 1 + \alpha_{AS}^{\Lambda_c^+} \alpha_{AS}^{\Lambda} \cos\theta_p$$

• P^{Λ^0} and $\alpha_{AS}^{\Lambda^0}$ are polarization and decay-asymmetry of Λ^0 where $P^{\Lambda^0} = \alpha_{AS}^{\Lambda^+_c}$

JRJC-2016 Decay $\Lambda_c^+ \longrightarrow \Lambda \pi^+$ CP violation

What can we measure

• decay-asymmetries of $\Lambda_c^+(\alpha_{AS}^{\Lambda_c^+})$ and $\bar{\Lambda}_c^-(\alpha_{AS}^{\bar{\Lambda}_c^-})$, using the known values $\alpha_{AS}^{\Lambda_0^0} = 0.642 \pm 0.013$

What can we measure

- decay-asymmetries of $\Lambda_c^+(\alpha_{AS}^{\Lambda_c^+})$ and $\bar{\Lambda}_c^-(\alpha_{AS}^{\bar{\Lambda}_c^-})$, using the known values $\alpha_{AS}^{\Lambda^0} = 0.642 \pm 0.013$
- With α^{Λ⁺_c}_{AS} = −α^{Λ̄_c}_{AS}, any disagreement of the above angular distributions → could reveal direct test of CP symetry

What can we measure

- decay-asymmetries of $\Lambda_c^+(\alpha_{AS}^{\Lambda_c^+})$ and $\bar{\Lambda}_c^-(\alpha_{AS}^{\bar{\Lambda}_c^-})$, using the known values $\alpha_{AS}^{\Lambda^0} = 0.642 \pm 0.013$
- With α^{Λ⁺_c} = −α^{Λ̄_c}, any disagreement of the above angular distributions → could reveal direct test of CP symetry
- based on the θ_Λ distribution, we can measure also the transverse polarization of Λ⁺_c(P<sup>Λ⁺_Z) using the estimated α^{Λ⁺_c}_{AS}
 </sup>

- decay-asymmetries of $\Lambda_c^+(\alpha_{AS}^{\Lambda_c^+})$ and $\bar{\Lambda}_c^-(\alpha_{AS}^{\bar{\Lambda}_c^-})$, using the known values $\alpha_{AS}^{\Lambda^0} = 0.642 \pm 0.013$
- With α^{Λ⁺_c} = −α^{Λ̄_c}, any disagreement of the above angular distributions → could reveal direct test of CP symetry
- based on the θ_Λ distribution, we can measure also the transverse polarization of Λ⁺_c(P<sup>Λ⁺_Z) using the estimated α^{Λ⁺_c}_{AS}
 </sup>

Note: each particle is charactarized by a specific parameter called the $\alpha_{asymmetry}$.

Data, MC and the cuts

- * Data samples :2011 and 2012
- * MC Simulation :2011 and 2012

Data, MC and the cuts

Data, MC and the cuts

PID (particle identification) requirements to reduce mis-identification:

PID (particle identification)requirements to reduce mis-identification:

- * piminus ProbNNpi > 0.2
- * piplus ProbNNpi > 0.2
- * pplus ProbNNp > 0.2

PID Cuts

PID (particle identification) requirements to reduce mis-identification:

- * piminus ProbNNpi > 0.2
- * piplus ProbNNpi > 0.2
- * pplus ProbNNp > 0.2

PID Cuts

PID (particle identification) requirements to reduce mis-identification:

- * piminus ProbNNpi > 0.2
- * piplus ProbNNpi > 0.2
- * pplus ProbNNp > 0.2

Data, MC and the cuts

TMVA

We trained against Λ_c^+ combinatoral background by taking some variables for TMVA :

TMVA

We trained against Λ_c^+ combinatoral background by taking some variables for TMVA :

- 1) Lb flying distance
- 2) CHI2NDOF of the pi-track
- 3) Lambda0 flying distance
- 4) Lb Direction Angle

TMVA

We trained against Λ_c^+ combinatoral background by taking some variables for TMVA :

- 1) Lb flying distance
- 2) CHI2NDOF of the pi-track
- 3) Lambda0 flying distance
- 4) Lb Direction Angle

Lambda_cplus_M

TMVA

We trained against Λ_c^+ combinatoral background by taking some variables for TMVA :

- 1) Lb flying distance
- 2) CHI2NDOF of the pi-track
- 3) Lambda0 flying distance
- 4) Lb Direction Angle

we take the region btw two arrows to be a pure combinatoral bkg and we use BDT cuts to eliminate it.

TMVA

We trained against Λ_c^+ combinatoral background by taking some variables for TMVA :

- 1) Lb flying distance
- 2) CHI2NDOF of the pi-track
- 3) Lambda0 flying distance
- 4) Lb Direction Angle

we take the region btw two arrows to be a pure combinatoral bkg and we use BDT cuts to eliminate it.

Data, MC and the cuts

BDT and TMVA studies

MC Model

MC Model

we used a double crystal ball function to model the MC signal

► CB Model]

final Results

After the cuts above, we come to the Λ_c^+ mass spectrum:

final Results

After the cuts above, we come to the Λ_c^+ mass spectrum:

mass of the lambdac_plus

JRJC-2016	
-----------	--

conclusion

Conclusion

- Phenomenological Study of the weak Λ_b^0 and Λ_c^+ Decays
 - Direct test of TRV from Λ⁰_b decay
 - Direct test of CPV from Λ[˜]_c decay
- Angular analysis of the above decays.
- extraction of some important particle parameters.

JRJC-2016			
conclusion			

Thank you for your attention.