Search for CP and T Violations in the Weak Semileptonic Λ_{b} and Λ_{c}^{+}Decays with the LHCb Detector

Mohamad KOZEIHA JRJC 2016

December 11, 2016

Outline

(1) motivation
(2) LHCb detector
(3) Decay $\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \overline{\nu_{\mu}}$ in search for TRV
(4) Decay $\Lambda_{c}^{+} \longrightarrow \Lambda \pi^{+}$CP violation
(5) Data, MC and the cuts

6 conclusion

motivation

- measure the polarization of the Λ_{b}^{0} and Λ_{c}^{+}.
- Test the TRV and the CPV in weak semileptonic decays.
- measure directly some important parameters for particle physics.
- full anguar distribution studies for different decay channels.
- New startegy for searching for TRV or CPV.

The LHCb detector is a single arm forward spectrometer.

The LHCb detector is a single arm forward spectrometer.

Decay $\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \nu_{\mu}^{-}$in search for TRV
Phenomenological Study of the Weak Semilptonic Λ_{b} Decays ($\left.\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \overline{\nu_{\mu}}\right)$.

Decay $\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \nu_{\mu}$ in search for TRV
Phenomenological Study of the Weak Semilptonic Λ_{b} Decays ($\left.\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \overline{\nu_{\mu}}\right)$.
$\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \overline{\nu_{\mu}}$

Decay $\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \nu_{\mu}$ in search for TRV
Phenomenological Study of the Weak Semilptonic Λ_{b} Decays ($\left.\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \overline{\nu_{\mu}}\right)$.

$$
\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \overline{\nu_{\mu}}
$$

Decay $\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \nu_{\mu}$ in search for TRV
Phenomenological Study of the Weak Semilptonic Λ_{b} Decays ($\left.\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \overline{\nu_{\mu}}\right)$.
$\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \overline{\nu_{\mu}}$

Decay $\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \nu_{\mu}$ in search for TRV
Phenomenological Study of the Weak Semilptonic Λ_{b} Decays ($\left.\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \overline{\nu_{\mu}}\right)$.

$$
\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \overline{\nu_{\mu}}
$$

$$
\Lambda_{c}^{+} \longrightarrow \Lambda \pi^{+}
$$

Phenomenological Study of the Weak Semilptonic Λ_{b} Decays (

$$
\left.\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \overline{\nu_{\mu}}\right) .
$$

$$
\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \overline{\nu_{\mu}}
$$

$$
\Lambda_{c}^{+} \longrightarrow \Lambda \pi^{+}
$$

- Note that these particles decay via weak interactions due to the presence of the W-boson.

Decay $\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \nu_{\mu}^{-}$in search for TRV
Phenomenological Study of the Weak Semilptonic Λ_{b} Decays ($\left.\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \overline{\nu_{\mu}}\right)$.

Phenomenological Study of the Weak Semilptonic Λ_{b} Decays ($\left.\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \overline{\nu_{\mu}}\right)$.

- The presence of the neutrino results in a missing energy needed to be reconstructed.

Phenomenological Study of the Weak Semilptonic Λ_{b} Decays (

 $\left.\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \overline{\nu_{\mu}}\right)$.- The presence of the neutrino results in a missing energy needed to be reconstructed.
- Flight distance and other kinematics determine Λ_{b} momentum .

Phenomenological Study of the Weak Semilptonic Λ_{b} Decays (

 $\left.\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \overline{\nu_{\mu}}\right)$.- The presence of the neutrino results in a missing energy needed to be reconstructed.
- Flight distance and other kinematics determine Λ_{b} momentum .

Phenomenological Study of the Weak Semilptonic Λ_{b} Decays (

 $\left.\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \overline{\nu_{\mu}}\right)$.- The presence of the neutrino results in a missing energy needed to be reconstructed.
- Flight distance and other kinematics determine Λ_{b} momentum .
- The Λ_{b} momentum up to a two-fold ambiguity is given by:

Phenomenological Study of the Weak Semilptonic Λ_{b} Decays (

 $\left.\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \overline{\nu_{\mu}}\right)$.- The presence of the neutrino results in a missing energy needed to be reconstructed.
- Flight distance and other kinematics determine Λ_{b} momentum .

- The Λ_{b} momentum up to a two-fold ambiguity is given by:

$$
\begin{aligned}
{\left[\left(\frac{\hat{p}\left[\Lambda_{b}\right] \cdot \vec{p}\left[\Lambda_{c} \mu\right]}{E\left[\Lambda_{c} \mu\right]}\right)^{2}-1\right] p\left[\Lambda_{b}\right]^{2} } & +\left[\left(m\left[\Lambda_{b}\right]^{2}+m\left[\Lambda_{c} \mu\right]^{2}\right) \frac{\hat{p} \hat{p}\left[\Lambda_{b}\right] \cdot \vec{p}\left[\Lambda_{c} \mu\right]}{E^{2}\left[\Lambda_{c} \mu\right]}\right] p\left[\Lambda_{b}\right] \\
& +\left[\left(\frac{\left(m\left[\Lambda_{b}\right]^{2}+m\left[\Lambda_{c} \mu\right]^{2}\right)}{2 E\left[\Lambda_{c} \mu\right]}\right)^{2}-m\left[\Lambda_{b}\right]^{2}\right]=0
\end{aligned}
$$

Study of the T odd observables

Test TRV \longrightarrow search for T odd observables (change sign under time reversal symmetry).we have two types:

Study of the T odd observables

Test TRV \longrightarrow search for T odd observables (change sign under time reversal symmetry).we have two types:

- The special angle (sine and cosine) to be defined later.

Study of the T odd observables

Test TRV \longrightarrow search for T odd observables (change sign under time reversal symmetry).we have two types:

- The special angle (sine and cosine) to be defined later.
- The polarization of the resonating particles.

Study of the T odd observables

Test TRV \longrightarrow search for T odd observables (change sign under time reversal symmetry).we have two types:

- The special angle (sine and cosine) to be defined later.
- The polarization of the resonating particles.
$\longrightarrow 4$ posibilties of testing TRV in one event.

Definition of the Observable:The Special Angles

As illustrated in the figure below, consider the normal vectors to the production plane of Λ_{c}^{+}and the W -boson :

Definition of the Observable:The Special Angles

As illustrated in the figure below, consider the normal vectors to the production plane of Λ_{c}^{+}and the W-boson :

Definition of the Observable:The Special Angles

As illustrated in the figure below, consider the normal vectors to the production plane of Λ_{c}^{+}and the W -boson :

Definition of the Observable

Vectors above are even by T symmetry but the cosine and the sine of their azimutal angles are odd by T and written as a mixed product of the polar vectors:

Definition of the Observable

Vectors above are even by T symmetry but the cosine and the sine of their azimutal angles are odd by T and written as a mixed product of the polar vectors:

special angles

$$
\begin{equation*}
\cos \phi_{\left(n_{\Lambda_{c}^{+}}\right)}=\overrightarrow{e_{Y}} \cdot \frac{\overrightarrow{e_{Z}} \times \overrightarrow{n_{\Lambda_{c}^{+}}}}{\left|\overrightarrow{e_{Z}} \times \overrightarrow{n_{\Lambda_{c}^{+}}}\right|}, \quad \sin \phi_{\left(n_{\Lambda_{c}^{+}}\right)}=\overrightarrow{e_{Z}} \cdot \frac{\overrightarrow{e_{X}} \times \overrightarrow{n_{c}^{+}}}{\left|\overrightarrow{e_{Z}} \times \overrightarrow{n_{c}^{+}}\right|} \tag{2}
\end{equation*}
$$

Definition of the Observable

Vectors above are even by T symmetry but the cosine and the sine of their azimutal angles are odd by T and written as a mixed product of the polar vectors:

special angles

$$
\begin{equation*}
\cos \phi_{\left(n_{\Lambda_{c}^{+}}\right)}=\overrightarrow{e_{Y}} \cdot \frac{\overrightarrow{e_{Z}} \times \overrightarrow{n_{c}^{+}}}{\left|\overrightarrow{e_{Z}} \times \overrightarrow{n_{\Lambda_{c}^{+}}}\right|}, \quad \sin \phi_{\left(n_{\Lambda_{c}^{+}}\right)}=\overrightarrow{e_{Z}} \cdot \frac{\overrightarrow{e_{X}} \times \overrightarrow{n_{\Lambda_{c}^{+}}}}{\left|\overrightarrow{e_{Z}} \times \overrightarrow{n_{c}^{+}}\right|} \tag{2}
\end{equation*}
$$

These two quantities will be denoted as the Special angles. The relation 3 recalls the transformation by T of the vector base of the Transversity frame used in this decay.

Decay $\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \nu_{\mu}^{-}$in search for TRV

Definition of the Observable

Decay $\Lambda_{b} \longrightarrow \Lambda_{c}^{+} \mu^{-} \nu_{\mu}^{-}$in search for TRV

Definition of the Observable

$$
\begin{equation*}
\overrightarrow{e_{Z}}=\frac{\overrightarrow{e_{p 1}} \times \overrightarrow{p_{\Lambda_{c}^{+}}}}{\left|\overrightarrow{e_{p 1}} \times \overrightarrow{p_{\Lambda_{c}^{+}}}\right|} \rightarrow+\overrightarrow{e_{Z}}, \overrightarrow{e_{X}}=\frac{\overrightarrow{p_{p 1}}}{\left|\overrightarrow{p_{p 1}}\right|} \rightarrow-\overrightarrow{e_{X}}, \overrightarrow{e_{Y}}=\overrightarrow{e_{Z}} \times \overrightarrow{e_{X}} \rightarrow-\overrightarrow{e_{Y}} \tag{3}
\end{equation*}
$$

Definition of the Observable

$$
\overrightarrow{e_{Z}}=\frac{\overrightarrow{e_{p 1}} \times \overrightarrow{p_{\Lambda_{c}^{+}}}}{\left|\overrightarrow{e_{p 1}} \times \overrightarrow{p_{\Lambda_{c}^{+}}}\right|} \rightarrow+\overrightarrow{e_{Z}}, \overrightarrow{e_{X}}=\frac{\overrightarrow{p_{p 1}}}{\left|\overrightarrow{p_{p 1}}\right|} \rightarrow-\overrightarrow{e_{X}}, \overrightarrow{e_{Y}}=\overrightarrow{e_{Z}} \times \overrightarrow{e_{X}} \rightarrow-\overrightarrow{e_{Y}}
$$

Remark: the quantities $\cos \phi_{\left(n_{\Lambda_{c}^{+}}\right)}$and $\sin \phi_{\left(n_{\Lambda_{c}^{+}}\right)}$are constructed from the momentums. Since the momentums are odd by T and P, the special angles therefore change sign under these two symmetries.

Polarization of the Intermediate Resonaces

Λ_{b}^{0} comes from strong interaction \longrightarrow its polarization can't be considered as a signature of Time Reversal Violation.

Polarization of the Intermediate Resonaces

Λ_{b}^{0} comes from strong interaction \longrightarrow its polarization can't be considered as a signature of Time Reversal Violation. The polarization vectors of the Λ_{c}^{+}and the w-boson seem to be more relevant.

Polarization of the Intermediate Resonaces

Λ_{b}^{0} comes from strong interaction \longrightarrow its polarization can't be considered as a signature of Time Reversal Violation. The polarization vectors of the Λ_{c}^{+}and the w-boson seem to be more relevant.
Decompose the polarization vector of these resonances, \longrightarrow construct the helicity frames: ($\left.\Lambda_{c}^{+}, \overrightarrow{e_{L 1}}, \overrightarrow{e_{T 1}}, \overrightarrow{e_{N 1}}\right)$ and $\left(W_{\text {virtual }}^{-}, \overrightarrow{e_{L 2}}, \overrightarrow{e_{T 2}}, \overrightarrow{e_{N 2}}\right)$.
Figure below, shows frames constructed starting from the Λ_{b}^{0} transversity frame. Their vector bases are defined as follows:

Polarization of the Intermediate Resonaces

$$
\begin{equation*}
\overrightarrow{e_{L 1}}=\frac{\overrightarrow{p_{\Lambda_{c}^{+}}}}{\left|\overrightarrow{p_{c}^{+}}\right|}, \quad \overrightarrow{e_{N 1}}=\frac{\overrightarrow{e_{Z}} \times \overrightarrow{e_{L 1}}}{\left|\overrightarrow{e_{Z}} \times \overrightarrow{e_{L 1}}\right|}, \quad \overrightarrow{e_{T 1}}=\overrightarrow{e_{N 1}} \times \overrightarrow{e_{L 1}} \tag{4}
\end{equation*}
$$

Polarization of the Intermediate Resonaces

$$
\begin{equation*}
\overrightarrow{e_{L 1}}=\frac{\overrightarrow{p_{\Lambda_{c}^{+}}}}{\left|\overrightarrow{p_{c}^{+}}\right|}, \quad \overrightarrow{e_{N 1}}=\frac{\overrightarrow{e_{Z}} \times \overrightarrow{e_{L 1}}}{\left|\overrightarrow{e_{Z}} \times \overrightarrow{e_{L 1}}\right|}, \quad \overrightarrow{e_{T 1}}=\overrightarrow{e_{N 1}} \times \overrightarrow{e_{L 1}} \tag{4}
\end{equation*}
$$

Polarization of the Intermediate Resonaces

$$
\begin{equation*}
\overrightarrow{e_{L 1}}=\frac{\overrightarrow{p_{C}^{+}}}{\left|\overrightarrow{p_{\Lambda_{c}^{+}}}\right|}, \quad \overrightarrow{e_{N 1}}=\frac{\overrightarrow{e_{Z}} \times \overrightarrow{e_{L 1}}}{\left|\overrightarrow{e_{Z}} \times \overrightarrow{e_{L 1} \mid}\right|}, \quad \overrightarrow{e_{T 1}}=\overrightarrow{e_{N 1}} \times \overrightarrow{e_{L 1}} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\overrightarrow{e_{L 2}}=\frac{\overrightarrow{p_{W_{\text {virtual }}^{-}}^{-}}}{\left|\overrightarrow{p_{W_{\text {virtual }}^{-}}^{-}}\right|}, \quad \overrightarrow{e_{N 2}}=\frac{\overrightarrow{e_{Z}} \times \overrightarrow{e_{L 2}}}{\left|\overrightarrow{e_{Z}} \times \overrightarrow{e_{L 2}}\right|}, \quad \overrightarrow{e_{T 2}}=\overrightarrow{e_{N 2}} \times \overrightarrow{e_{L 2}} \tag{5}
\end{equation*}
$$

LHCB frame of the Λ_{c}^{+}

* Transversity frame from the Standard Laboratory frame.

$$
\begin{aligned}
& \mathbf{e}_{Z}=\frac{\mathbf{e}_{z} \times \mathbf{p}_{\Lambda_{C}^{+}}}{\left|\mathbf{e}_{2} \times \mathbf{p}_{\Lambda_{C}^{+}}\right|} \\
& \mathbf{e}_{X}=\hat{\mathbf{p}}_{p}(l a b) \\
& \mathbf{e}_{Y}=\mathbf{e}_{Z} \times \mathbf{e}_{X}
\end{aligned}
$$

LHCB frame of the Λ_{c}^{+}

* Transversity frame from the Standard Laboratory
frame.
$\mathbf{e}_{Z}=\frac{\mathbf{e}_{z} \times \mathbf{p}_{\Lambda_{c}^{+}}}{\left|\mathbf{e}_{z} \times \mathbf{p}_{\Lambda_{c}^{+}}\right|}$
$\mathbf{e}_{X}=\hat{\mathbf{p}}_{p}(l a b)$
$\mathbf{e}_{Y}=\mathbf{e}_{z} \times \mathbf{e}_{X}$
* Λ_{c}^{+}Transversity rest frame: From Transversity frame by Lorentz Boost along $\mathbf{p}_{\Lambda_{c}^{+}}$

LHCB frame of the Λ_{c}^{+}

* Transversity frame from the Standard Laboratory frame.

$$
\begin{aligned}
& \mathbf{e}_{Z}=\frac{\mathbf{e}_{z} \times \mathbf{p}_{\Lambda_{C}^{+}}}{\left|\mathbf{e}_{2} \times \mathbf{p}_{\Lambda_{C}^{+}}\right|} \\
& \mathbf{e}_{X}=\hat{\mathbf{p}}_{p}(l a b) \\
& \mathbf{e}_{Y}=\mathbf{e}_{Z} \times \mathbf{e}_{X}
\end{aligned}
$$

* Λ_{c}^{+}Transversity rest frame: From Transversity frame by Lorentz Boost along $\mathbf{p}_{\Lambda_{c}^{+}}$

Phenomenological Study of the weak Λ_{c}^{+}Decays

- Cascade decay $\Lambda_{c}^{+} \rightarrow \Lambda^{0} \pi^{+}$and $\Lambda^{0} \longrightarrow p \pi^{-}$

- Final states are p pi- pi+ mu nu, why ?
- It is a new channel to be studied.
- 2 pseudo scalar particles (spin 0) necessary for the angular equations.
- Λ_{b} comes from strong interactions \longrightarrow deduce its polarisation.

Phenomenological Study of the weak Λ_{c}^{+}Decays

Polar angle of Λ in Λ_{c}^{+}rest frame:

Phenomenological Study of the weak Λ_{c}^{+}Decays

Polar angle of Λ in Λ_{c}^{+}rest frame:

- $\frac{d \sigma}{d \cos \theta_{\Lambda}} \propto 1+\alpha_{A S}^{\Lambda_{c}^{+}} P_{Z}^{\wedge_{c}^{+}} \cos \theta_{\Lambda}$
- $P_{Z}^{\wedge_{c}^{+}}$and $\alpha_{A S}^{\Lambda_{c}^{+}}$are polarization and decay-asymmetry of Λ_{c}^{+}

Phenomenological Study of the weak \wedge_{c}^{+}Decays

Polar angle of Λ in Λ_{c}^{+}rest frame:

- $\frac{d \sigma}{d \cos \theta_{\Lambda}} \propto 1+\alpha_{A S}^{\Lambda_{c}^{+}} P_{Z}^{\Lambda_{c}^{+}} \cos \theta_{\Lambda}$
- $P_{Z}^{\Lambda_{c}^{+}}$and $\alpha_{A S}^{\Lambda_{c}^{+}}$are polarization and decay-asymmetry of Λ_{c}^{+}

Phenomenological Study of the weak Λ_{c}^{+}Decays

Polar angle of proton in \wedge rest frame:

Phenomenological Study of the weak Λ_{c}^{+}Decays

Polar angle of proton in \wedge rest frame:

- $\frac{d \sigma}{d \cos \theta_{p}} \propto 1+\alpha_{A S}^{\Lambda_{c}^{+}} \alpha_{A S}^{\Lambda} \cos \theta_{p}$
- $P^{\wedge^{0}}$ and $\alpha_{A S}^{\Lambda_{S}^{0}}$ are polarization and decay-asymmetry of Λ^{0} where $P^{\wedge^{0}}=\alpha_{A S}^{\Lambda_{c}^{+}}$

Phenomenological Study of the weak Λ_{c}^{+}Decays

Polar angle of proton in \wedge rest frame:

- $\frac{d \sigma}{d \cos \theta_{p}} \propto 1+\alpha_{A S}^{\Lambda_{c}^{+}} \alpha_{A S}^{\Lambda} \cos \theta_{p}$
- $P^{\wedge^{0}}$ and $\alpha_{A S}^{\Lambda^{0}}$ are polarization and decay-asymmetry of Λ^{0} where $P^{\wedge^{0}}=\alpha_{A S}^{\Lambda_{c}^{+}}$

What can we measure

- decay-asymmetries of $\Lambda_{c}^{+}\left(\alpha_{A S}^{\Lambda_{c}^{+}}\right)$and $\bar{\Lambda}_{c}^{-}\left(\alpha_{A S}^{\bar{\Lambda}_{c}^{-}}\right)$, using the known values $\alpha_{A S}^{\Lambda^{0}}=0.642 \pm 0.013$

What can we measure

- decay-asymmetries of $\Lambda_{c}^{+}\left(\alpha_{A S}^{\Lambda_{c}^{+}}\right)$and $\bar{\Lambda}_{c}^{-}\left(\alpha_{A S}^{\bar{\Lambda}_{c}^{-}}\right)$, using the known values $\alpha_{A S}^{\Lambda_{0}^{0}}=0.642 \pm 0.013$
- With $\alpha_{A S}^{\Lambda_{c}^{+}}=-\alpha_{A S}^{\bar{\Lambda}_{c}^{-}}$, any disagreement of the above angular distributions \longrightarrow could reveal direct test of CP symetry

What can we measure

- decay-asymmetries of $\Lambda_{c}^{+}\left(\alpha_{A S}^{\Lambda_{c}^{+}}\right)$and $\bar{\Lambda}_{c}^{-}\left(\alpha_{A S}^{\bar{\Lambda}_{c}^{-}}\right)$, using the known values $\alpha_{A S}^{\Lambda_{S}^{0}}=0.642 \pm 0.013$
- With $\alpha_{A S}^{\wedge_{c}^{+}}=-\alpha_{A S}^{\bar{\Lambda}_{c}^{-}}$, any disagreement of the above angular distributions \longrightarrow could reveal direct test of CP symetry
- based on the θ_{Λ} distribution, we can measure also the transverse polarization of $\Lambda_{c}^{+}\left(P_{Z}^{\Lambda_{c}^{+}}\right)$using the estimated $\alpha_{A S}^{\Lambda_{c}^{+}}$

What can we measure

- decay-asymmetries of $\Lambda_{c}^{+}\left(\alpha_{A S}^{\Lambda_{c}^{+}}\right)$and $\bar{\Lambda}_{c}^{-}\left(\alpha_{A S}^{\bar{\Lambda}_{c}^{-}}\right)$, using the known values $\alpha_{A S}^{\Lambda_{S}^{0}}=0.642 \pm 0.013$
- With $\alpha_{A S}^{\wedge_{c}^{+}}=-\alpha_{A S}^{\bar{\Lambda}_{c}^{-}}$, any disagreement of the above angular distributions \longrightarrow could reveal direct test of CP symetry
- based on the θ_{Λ} distribution, we can measure also the transverse polarization of $\Lambda_{c}^{+}\left(P_{Z}^{\Lambda_{c}^{+}}\right)$using the estimated $\alpha_{A S}^{\Lambda_{c}^{+}}$
Note: each particle is charactarized by a specific parameter called the $\alpha_{\text {asymmetry }}$.

DataSet

* Data samples :2011 and 2012
* MC Simulation :2011 and 2012

Data, MC and the cuts

PID Cuts

PID Cuts

PID (particle identification)requirements to reduce mis-identification:

PID Cuts

PID (particle identification)requirements to reduce mis-identification:

* piminus - ProbNNpi >0.2
* piplus - ProbNNpi >0.2
* pplus - ProbNNp > 0.2

PID Cuts

PID (particle identification)requirements to reduce
 mis-identification:

* piminus - ProbNNpi > 0.2
* piplus - ProbNNpi > 0.2
* pplus - ProbNNp > 0.2

PID Cuts

PID (particle identification)requirements to reduce mis-identification:

* piminus - ProbNNpi > 0.2
* piplus - ProbNNpi > 0.2
* pplus - ProbNNp > 0.2

Lambda_cplus_M

TMVA

We trained against Λ_{c}^{+}combinatoral background by taking some variables for TMVA :

TMVA

We trained against Λ_{c}^{+}combinatoral background by taking some variables for TMVA :

1) Lb flying distance
2) CHI2NDOF of the pi-track
3) Lambda0 flying distance
4) Lb Direction Angle

TMVA

We trained against Λ_{c}^{+}combinatoral background by taking some variables for TMVA :

Lambda_cplus_M

1) Lb flying distance
2) CHI2NDOF of the pi-track
3) Lambda0 flying distance

4) Lb Direction Angle

TMVA

We trained against Λ_{c}^{+}combinatoral background by taking some variables for TMVA :

Lambda_cplus_M

1) Lb flying distance
2) CHI2NDOF of the pi-track
3) Lambda0 flying distance
4) Lb Direction Angle

we take the region btw two arrows to be a pure combinatoral bkg and we use BDT cuts to eliminate it.

TMVA

We trained against Λ_{c}^{+}combinatoral background by taking some variables for TMVA :

Lambda_cplus_M

1) Lb flying distance
2) CHI2NDOF of the pi-track
3) Lambda0 flying distance
4) Lb Direction Angle

we take the region btw two arrows to be a pure combinatoral bkg and we use BDT cuts to eliminate it.

Data, MC and the cuts

BDT and TMVA studies

MC Model

MC Model

we used a double crystal ball function to model the MC signal

final Results

After the cuts above, we come to the Λ_{c}^{+}mass spectrum:

final Results

After the cuts above, we come to the Λ_{c}^{+}mass spectrum:
mass of the lambdac_plus

Conclusion

- Phenomenological Study of the weak Λ_{b}^{0} and Λ_{c}^{+}Decays
- Direct test of TRV from Λ_{b}^{0} decay
- Direct test of CPV from \wedge_{c}^{+}decay
- Angular analysis of the above decays.
- extraction of some important particle parameters.

Thank you for your attention.

