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The Dark Matter problem
°

Introduction

Standard Model issues (non exhaustive...) :

@ Complex gauge structure : SU(3). ® SU(2), ® U(1)y
@ Hierarchy problem and vacuum stability
@ Neutrinos masses

@ Why 3 families of quark and leptons?

<

Gravity related issues :

@ Quantized gravity? Link with the standard model?

@ Dark matter and dark energy : 25% and 70% of the energy budget
of the universe

A\

Not easy to solve these issues in a single model... can we find a more
general description of the particle content of the Standard Model and
include dark matter?

3/17



The Dark Matter problem
°

Dark matter : evidences

A missing mass issue :
@ Rotation curves : F.Zwicky (1933) et V.Rubin (1970)

o CMB (COBE, WMAP, Planck) : Q,, = 0.049 et Q, = 0.27
o The bullet cluster

T T
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Rotation curve of the galaxy NGC6503 (left), CMB anisotropy map from
Planck (center), mass contour from gravitationnal lensing and X-ray
emissions from the bullet cluster (right)
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The Dark
°

Matter problem

Thermodynamics in an expanding universe

Evolution of the Dark Matter density with Boltzmann equation:

Onx
ot

= —3Hn, + (n? n)(ov)

X-€q

Decoupling : ‘ H(xg) = n(xg)(ov) ‘ — Xp = Tﬂ ~ 23
- F

with F = Freeze-out and H = a/a (h=Ho/100km.s~1.Mpc~1)

m n(x)lneq(x:l) [GeV]

x=m/T

Assuming the DM in thermal
equilibrium with the SM
at early times

23X 10~%"cm3s™!

{ov)

The WIMP "miracle"!

Q,h
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The Dark Matter problem
°

Dark Matter models overview

Less complete

“Sketches of models”™
More

complete

Dark Matter
Effective Field Theories

Minimal
Supersymmetric
Standard Model

Contact
Interactions

Complete
Dark Matter
Models

Universal
Extra

Dimensions
e
3

[arXiv:1506.03116]

Important points :

@ The WIMP paradigm is not the only explanation! (FIMP, SIMP, ..IMP)
@ Where is supersymmetry?

@ Symmetry is an essential concept and tool in the Standard Model
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From GUT to Z’ portal DM
°0

Toward Grand Unification Theories?

End of the 19th century : First step toward GUTs :
James Clerk Maxell in "A Dynamical Theory of the
Electromagnetic Field" unify electricity and magnetism

In the 60's : Glashow, Weinberg and Salam describe
weak interactions and electromagnetism with a single
gauge structure SU(2) ® U(1)

0 - Standard Model
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1 10° 10" 1'%
Energy, GeV 7/17



From GUT to Z’ portal DM
oce

GUT beyond the standard model with Georgi & Glashow

In the 70's First attempt at embedding the SM gauge group in a

larger gauge structure with SU(5)

24 =(8,1,0)®(1,3,0)®(1,1,0)®(3,2,-5/6) ®(3,2,+5/6)
—_—— ~——  ~——

-~

g wi.2,3 B X X

@ 1 generation of SM fermions in 5 & 10
e sin?(6,,) = 3/8 predicted at Mgyt
e Q(d)=1/3Q(e™) natural

@ Anomaly free theory

Some remaining issues :

@ Proton decay predicted — too fast!

o M, ~ 10'°Mz — Hierachy problem!
@ No gauge coupling unification and no clue about vg

4
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From GUT to Z’ portal DM
®0

GUT with SO(10) : Minkowski and Fritzsch

One generation of SM fermions + vr embedded in the 16 representation
Unification of gauge couplings at ~ 10*°*GeV

Intermediate scale at ~ 101°GeV — natural seesaw?

Anomaly free Uy
Respecting proton lifetime constraints

Remnant Z> symmetry — DM stability? [Mambrini et al. /15] Py

Gint = SU(4)c®SU(2) eSU(2)r d
0

20 | B r

L
104 108 108 10' 10'2 10'* 10'6 e
Scale [GeV]

Running of SM gauge couplings in SO(10) GUT [arXiv:1502.06929]
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From GUT to Z’ portal DM
oce

The emergence of a Z’

We consider general GUT inspired scenarios assuming that SO(10) is
broken SO(10) — Gy — Gsp @ U'(1).

We consider also a larger group Eg where Eg D SO(10)

Grand unification inspired scenarios :
@ Scenario x : SO(10) — SU(5) ® U(1),
@ Scenario ¢ : Es — SO(10) ® U(1)y
@ Scenario 7 : string inspired Z; = \/%Z;( s \/%Z{b

@ B — L and LR scenarios

Reference model

@ Sequential Standard Model (SSM) : couplings Z'-SM = Z-SM

Can we include dark matter in those models?
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From GUT to Z’ portal DM
°

Z' portal : the lagrangian

X P n LR B-L SSM
D | 2V10 | 2v6 | 2v/15 5/3 | 1 1
e -1 1 2 |-0109 [ 1/6 | 1 — Zsin*(Ow)
& -1 1 2 [ -0.109 | 1/6 | —1 + 1sin®*(Ow)
e 1 -1 2 0.656 | 1/6 —25sin*(Ow)
s -3 -1 -1 | -0874 ] 1/6 Lsin?(0w)
el ? ? ? ? ? ?

Couplings from the different theories considered ELR = €’,'_7R/D

@ the couplings between SM particles (f) and Z’ are fixed by construction
@ the mass of the Z’ is not fixed
@ To parametrize our ignorance, we suppose an interaction between the DM

particles (x) and Z’ of the form :

>

_ X
VX
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Distinguish Z’ theories and experimental constraints
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Distinguish Z’ theories and experimental constraints
0

Direct detection

— Try to measure the energy recoil Er of a nucleus from an interaction with
dark matter : LUX, PICO, XENON100, PANDAX, EDELWEISS, CDMS... and
many more in the next years! (XENONIT, LZ,...)

Event rate (kg™ 'j ‘kev™!)

dR  po Vese do
P 7Mnucmx /vm’-" )"(v)d—ER(v7 Er)vdv

@ DM mass my : unknown

@ nucleus mass Myuc

@ DM density in the solar system po and velocity
distribution f(v) : astrophysical observations

@ Differential cross section do/dEr :

do Mnuc
dEr - 2pBucv? [o5 F31(q) + o5° F2p(q)]

Z/

N N

Scattering of a DM particle
x on a nucleus N
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Distinguish Z’ theories and experimental constraints
oce

Consequences on scattering cross section :

X X

X Lyg = MgXXG9 = Lyn = AN

effective approach
z' .
P AN = Zq fa g with N = n,p
N N
q

; u fy are the form factors

Spin dependancy from operator decomposition

@ At low energy : gg ~ 2m — Spin Independant (SI)

@ At low energy : gy°q ~ 2p.5 — Spin Dependant (SD)
@ Vectorial coupling : gy*q : Sl

@ Axial coupling : gy*~v%q : SD

2 14\/2 2 14 A2
p _ Hxp8 VY b _ M8 AN
Og1 = 7 Qs Osp = 7 asD
T('MZ/ 7TMZ/
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Distinguish Z’ theories and experimental constraints
®00

Proton and neutron cross sections

Isp _ 3,2%sD IS 3,22
O'SP, as) o5 asy

107! 10° 10! 10% 107 10° 10! 10%

a=Ay/Vx o= Ay /Vy
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Distinguish Z’ theories and experimental constraints
oe0

- p
Constraints on Tsp

@ Assuming a thermally produced DM, we need {ov) ~ 3 x 10 2®cm3s™!.
@ Velocity of DM in the galaxy v ~ 10™3¢c — velocity expansion of < ov >

2 /4
ITIXg

2 2 2
ov) ~ V. Alv
< > v 50 WMé/ ( X + X )
We can make a prediction for o, respecting the strong constraints from the
LUX collaboration on ¢%;, and compare with PICO results [arxiv:1503.00008].

10797
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Conclusion

@ Main idea of dark matter phenomenology in the GUT context
@ Indirect detection and LHC constraints important as well
@ We haven't find dark matter yet

YOU KNOW NOTHING!
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