Development of planar pixel sensors for ATLAS tracker upgrade

Audrey Ducourthial

JRJC Instrumentation session

- 1. ATLAS Tracker Upgrade
 - ATLAS detector
 - ATLAS Upgrade
 - ATLAS Inner Tracker Upgrade
- 2. Upgrade LPNHE pixel sensors production: Testbeam results LPNHE sensors
 - Active edge sensors performances
 - Thin sensors performances
- 3. Future Plans

ATLAS Tracker Upgrade

ATLAS detector

- Inner Tracker
- Electromagnetic and hadronic calorimeter
- Muon spectrometer
- Solenoid and Toroidal magnets

ATLAS Tracker

- 3 subdetectors: Pixels, SCT, TRT
- Pixel detectors composed of now 4 layers (IBL)
- Pixel longitudinal resolution
 100 μm
- Pixel transverse spatial resolution 10 μm
- Pixel radiation hardness between 1 and 5 ×10¹⁵n_{eq}/cm²

η acceptance: -2.5 <η < 2.5</p>

 $\eta \equiv -\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$

ATLAS Upgrade

ATLAS data taking phase in HL LHC conditions (start in early 2026):

- challenging luminosity of $L_{inst} \simeq 7.5 \times 10^{34} cm^{-2} s^{-1}$
- 200 inelastic pp collisons per bunch crossing
- ▶ By the end of 2035, ATLAS will collect 3000 *fb*⁻¹
- Fluence inner tracker $2 \times 10^{16} n_{eq}/cm^2$ (4 times IBL fluence)

- Collect a large data sample to do precision measurements of Higgs boson, especially coupling to b quarks
- Precision measurements on other SM phenomena
- BSM searches

To achieve these physics goals we need:

- * Efficient reconstruction of pile up vertices
- * Better rejection of QCD background
- * Upgrade of b tagging algorithm to be efficient at high pile up and high eta

ATLAS Inner Tracker Upgrade Layout

 m^2 of pixels more than 600 Millions electronical channels 200 m^2 of strips

ATLAS Inner Tracker Upgrade Physics impact

 $B^0_{\rm s}$ mass resolution as a function of η in the decay channel $B^0_{\rm s} \to \mu^+\mu^-$

b-jet tagging efficiency for 200 events per bunch crossing (HL-LHC conditions) ATLAS ITK collaboration:

- Radiation hardness: 97% efficient with a fluence up to $2 \times 10^{16} neq/cm^2$
 - * Thinner sensors to fight charge trapping
 - * Better understanding of radiations impact on silicon sensors * LPNHE 100 μm thick sensors irradiated at 3 × 10¹⁵ n_{eq}/cm^2 and 1 × 10¹⁶ n_{eq}/cm^2
- Pile up compliance:

* granularity ($50\mu m \times 50\mu m$ pitch instead of $250\mu m \times 50\mu m$) * new chip RD53 ASICs $50 \times 50\mu m$ to deal with higher data rate than run1

Increase the geometrical acceptance

- * Instrument at high eta (Alpine sensors)
- ∗ Reduction of dead area ⇒LPNHE Active edge sensors

ITK

Reduction of dead area

b quarks \Rightarrow fragmentation

Better reconstruction of secondary vertices ↓ ↓ Put sensors closer to the beam + Reduction of dead area

 $\begin{array}{l} \text{ACTIVE} \\ \text{EDGE} \rightarrow 100 \ \mu m \end{array}$

Upgrade LPNHE pixel sensors production: Testbeam results

Sensor Description

Active Edge sensors

FBK production:

- n on p device
- thickness: 200 μm
- > pixel pitch 250 μm x 50 μm
- Biased during test thanks to temporary metal

Active edge production:

- Minimize dead area at the sensor edge
- LPNHE5 100 μm from last pixel, 0 GR
- LPNHE7 100 μm from last pixel, 2 GR

Sensor Description

Thin sensors & Alpine sensors

Thin Sensors: W80 & W30

- n on p device
- thickness: 100 μm
- unirradiated (W30) and irradiated (W80) at a fluence of 3 × 10¹⁵n_{eq}/cm²
- > pixel pitch 250 μm x 50 μm

Alpine sensors:

- High eta forward layout
- Tilted sensors
- Double sensors (2 FEI4, 1 sensor)
- Analysis ongoing

High Luminosity requirement and tests of interest

Efficiency above 97 $\% \Rightarrow$ Global Efficiency

Homogeneous efficiency \Rightarrow Pixel efficiency

Good spatial resolution \Rightarrow Residuals

Radiation hardness \Rightarrow Tests on irradiated sensors

Reduction of dead area ↓ Edge Efficiency analysis

ACTIVE EDGE 100 µm

TestBeams

* March 2015: DESY with 4GeV electrons **LPNHE5**

* July 2015: CERN SPS 120 Gev pions LPNHE5

* May 2016: CERN SPS LPNHE7, W80 unirradiated

* August 2016: CERN SPS LPNHE7, W30 unirradiated

* October 2016: CERN SPS LPNHE7, W80 irradiated

GLOBAL EFFICIENCY

Depleted at -20V

Efficiency is higher than 97 % for the 2 sensors with HDC set to 2 ¹⁷

IN PIXEL EFFICIENCY

No permanent bias structures \Rightarrow uniform charge efficiency

LPNHE7

CERN SPS

- Charge is not collected and not reemitted by Guard Rings
- Simulation and data are in good agreement
- Uninstrumented area is no longer dead :) !

Irradiated 100 μm thick sensor tested in October testbeam

THIN SENSORS EFFICIENCY

Average efficiency vs V_bias

- Fluence $3 \times 10^{15} n_{eq}/cm^2$
- Due to irradiation, Need of high voltage to be depleted
- ► For threshold=1200e an important fraction of signal is too low ⇒ low efficiency
- For threshold=1000e
 Good efficiency > 97%

THIN SENSORS EFFICIENCY

THIN SENSORS PIXEL EFFICIENCY

W80 irradiated:

Lack of efficency at the border due to punch through structure

SUMMARY

- Edge region efficient above 97% up to $70\mu m$ from last pixel
- > Thin sensors highly efficient after irradiation
- Use of temporary metal during test results in homogeneous efficiency performances after removal
- Good performances in terms of efficiency and spatial resolution

To be tested in beam in spring 2017:

- Combination of thin and active edge sensors (production 3) soon to be delivered.
- ▶ W30 irradiated non uniformly with fluence peak at $1 \times 10^{16} n_{eq}/cm^2$

Future Plans

Testbeams: 3 to 5 weeks of Testbeams in 2017 to test the new production (active edge and thin sensors) and highly irradiated thin sensors. TDR expected next year.

Radiation study: Study of the Si-SiO₂ interface damage and its interplay with the bulk damage. Simulation and measurements on irradiated devices

B tagging for upgrade: Adapting the algorithms or tuning the parameters for the upgrade layout, especially extended forward one (Alpine)