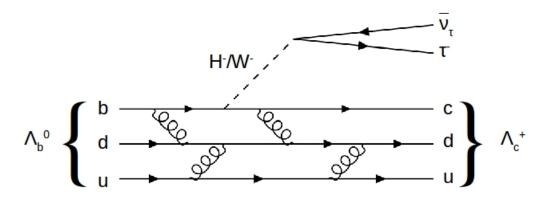
The measurement of $\mathcal{B}(\Lambda_b^0 o \Lambda_c^+ au^- ar u_ au)$ at the LHCb experiment

Victor Renaudin, LAL

08/12/16, JRJC 2016

Outline

- Semitauonic B decays
 - Lepton Flavour Universality (Violation ?)
 - Experimental status
 - Interest of this particular channel
- LHCb: a beautiful detector
- Overview of the key features of the analysis
 - \circ vertex inversion
 - \circ Isolation
 - Partial reconstruction
 - BDT and extraction of signal
- Conclusion


Introduction

In the Standard Model, all leptons ($l=e,\ \mu,\ au$) behave the same, up to phase space effect.

Discovering LFUV = clear sign of New Physiscs

How can we do it?

- Several NP models (2HDM, ...) have new couplings rising with $m_l.$
- au = heaviest lepton \longrightarrow enhanced sensitivity !

What to measure ?

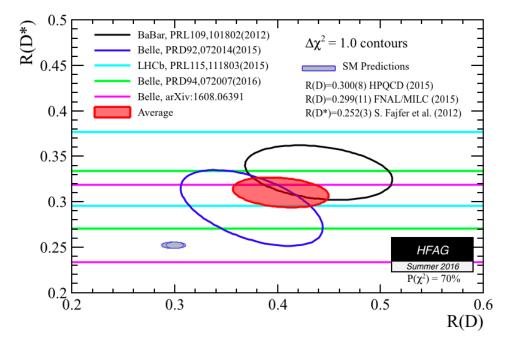
b
ightarrow c au
u transitions are a great tool to probe LFU :

- theoretically clean (up to 2% error)
- Several measurements from BaBar, Belle and LHCb.

Key observable :

$$R(X_c) = rac{\mathcal{B}(X_b o X_c au
u)}{\mathcal{B}(X_b o X_c \mu
u)}$$

Shared systematics are cancelled in the ratio $\left(X_{b},X_{c}
ight)$ can be :


- $(B^0,D^{(st)})$ for $R(D^{(st)})$
- $(\Lambda_b^0, \Lambda_c^{(*)})$ for $R(\Lambda_c^{(*)})$, ...

Current experimental status

Exisiting measurements of $R(D^{(*)})$ from Belle, BaBar and LHCb:

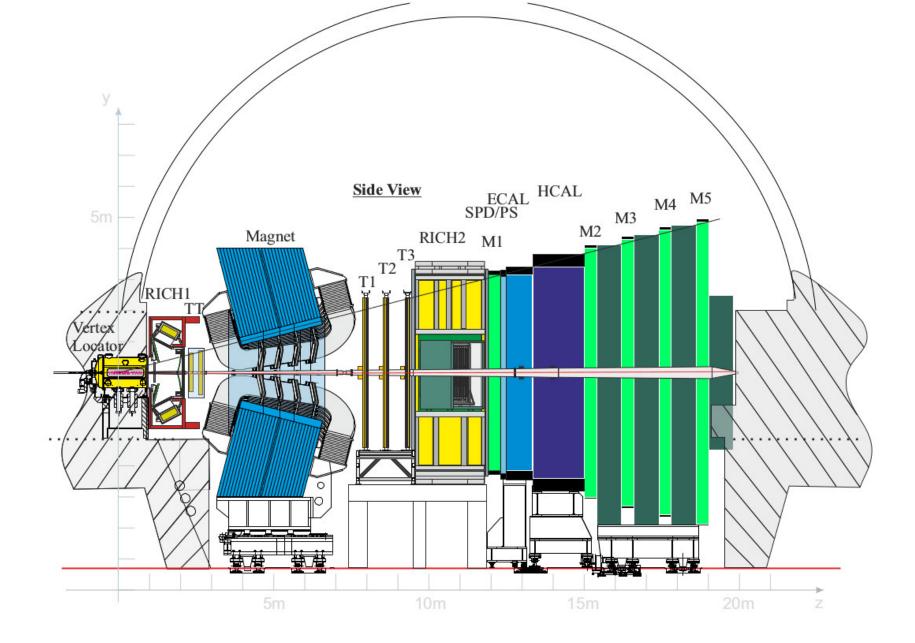
- most of them are using $au o \mu ar{
 u}_\mu
 u_ au$.
- Tension with the SM : discrepancy of **3.9** σ !

Hot topic : latest paper on arXiv published this week 1612.00529.

Our goal : measure $R(D^*)$ and $R(\Lambda_c)$ with $au o\pi^+\pi^-\pi^+
u_ au$

Why $R(\Lambda_c)$?

In addition to the $R(D^{(*)})$ analyses, **growing interest** for $R(\Lambda_c)$:


- Baryon channel complentary of existing meson channels.
- New Lattice result for $R(\Lambda_c)=0.3328\pm 0.0074\pm 0.0070.$

Hadronic $R(D^*)$ and $R(\Lambda_c)$ analyses share:

- background sources
- same general procedure and lots of tools

This analysis could lead to :

- The first measurement of ${\cal B}(\Lambda^0_b o \Lambda^+_c au ar
 u_ au)$
- A computation of $R(\Lambda_c)$ (using normalisation procedure)
- Helicity amplitudes computations (not possible with $D^{(st)}$)

LHCb: a beautiful detector

Detector built to study b-physics and CP violation. Forward spectrometer ightarrow **precise** measurements of the $b\overline{b}$ pair.

- good Vertexing and Impact Parameter (IP) measurement:
 - VELO and tracking stations to find B vertices and reconstruct tracks.
 - $\circ~\sigma_z=100~\mu$ m & $\sigma_{IP}=20\mu$ m.
- Momentum and mass resolution:

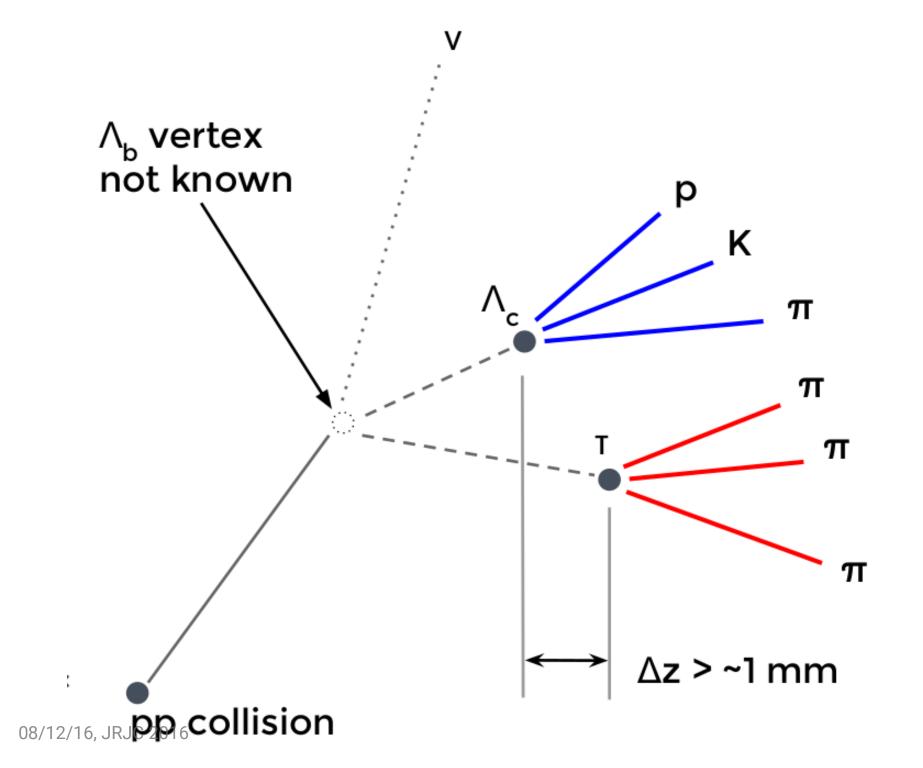
$$\circ \; rac{\Delta p}{p} = 1.0\%$$
 @ 200 GeV/c .

 $\circ\,$ mass resolution typically $10-100~MeV/c^2.$

- High efficiency Particle ID:
 - using two Ring Imaging Cherenkov detectors (RICH1 & RICH2) & Muons chambers (M1-M5).

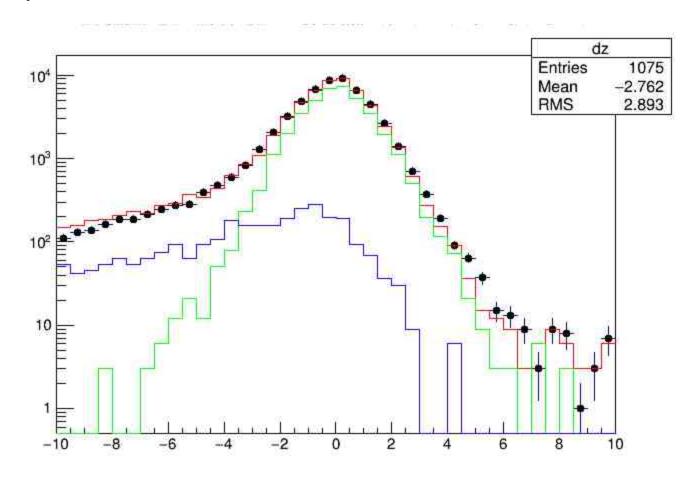
 $_{\rm 08/12/16,\ JRJC\ 2016}$ $\stackrel{\circ}{}$ good discrimination between p, K, π and μ particles.

$au o \pi\pi\pi u$


Why we want to use it ? \Rightarrow Allow to reconstruct the τ vertex. At first, it seems hopeless:

- Huge background coming from $\Lambda_b^0 o \Lambda_c^+ \pi \pi \pi X$.
- The Λ_b^0 vertex and its energy are **unknown** (missing ν).

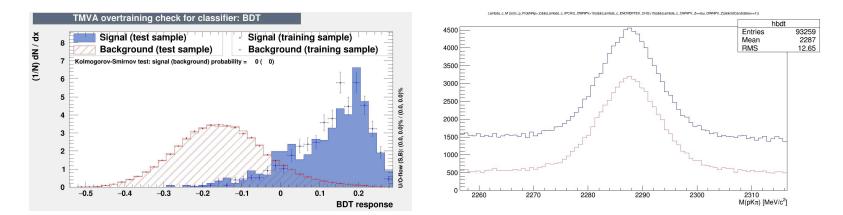
Our method: relying on Λ_c and au vertices and their decay time:


- background events: 3π vertex **upstream** to the Λ_c one.
- signal-like events: due to the lifetime of the au, 3π vertex can be downstream to the Λ_c one.

 \Longrightarrow relative inversion of Λ_c and au vertices is the key to suppress $\Lambda_c^+\pi\pi\pi X$ background events

Composition after inversion cut

Almost every $\Lambda_b^0 \to \Lambda_c^+ \pi \pi \pi X$ event is suppressed but every Λ_c + displaced 3π event is there...



Selection of the Λ_c

There is a need for dedicated selection of the Λ_c :

The Λ_c is first selected using a cut-based selection (kinematics and PID). The same variables are used to train a BDT.

We have a 90% efficiency on Signal (MC signal) and 15% on Background (Data 2012, ${\sim}1fb^{-1}$).

How to extract the signal ?

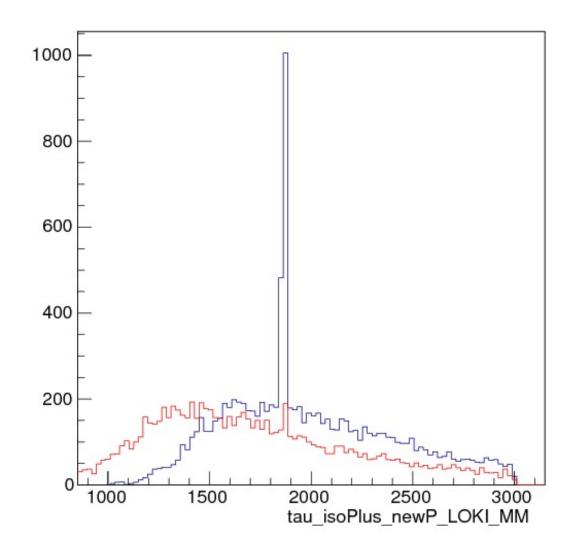
• Several sources of background remain:

$$\circ \ \Lambda_b o \Lambda_c D^{(*)}_{(s)} X$$
 such as $D^0 o 3\pi K^0$, $D^+ o K^0 3\pi$, $D_s o 3\pi N$,...

• No clear peak to fit

Plan:

- Isolation tools to detect every charged or neutral particle coming with $\Lambda_c~+~3\pi$
- Use of Multivariate analysis technique
- Fit to extract the signal yield
 - template for each background source extracted from simulation


Isolation

Neutral Isolation:

A cone around the 3π axis is used to look for related neutral energy in the calorimeter $(\gamma, \pi^0, K^0, ...)$.

Charged track isolation:

If some track of the event is able to form a good vertex with the 3π ones, the event is vetoed.

Signal Reconstruction

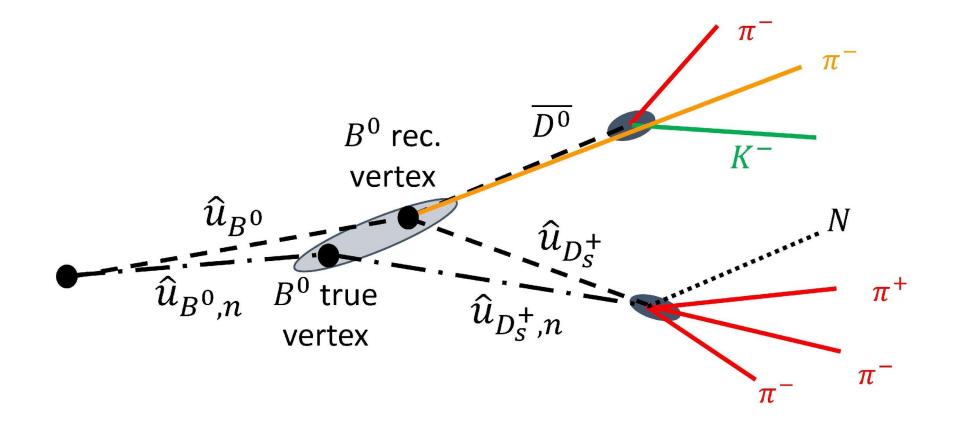
Signal hypothesis:

• au and Λ_b^0 momenta obtained using:

$$|ec{p}_{ au}| = rac{(m_{3\pi}^{\ 2} + m_{ au}^{2})|ec{p}_{3\pi}|\cos heta \pm E_{3\pi}\sqrt{(m_{ au}^{\ 2} - m_{3\pi}^{\ 2})^{2} - 4m_{ au}^{2}|ec{p}_{3\pi}|^{2}\sin^{2} heta}}{2(E_{3\pi}^{\ 2}|ec{p}_{3\pi}|^{2}\cos^{2} heta)}$$

• Two-fold ambiguity solved forcing both root squares to be zero:

$$heta_{max} = rcsin\left(rac{m_{ au}^2 - m_{3\pi}^{\ 2}}{2m_{ au}|ec{p}_{3\pi}|}
ight)$$


- Allow to measure τ decay time and q^2 transfered to the $\tau-\nu$ system

Background Reconstruction

• $\Lambda_b^0 \to \Lambda_c D_s^{(*(*))}$ background events can be partially reconstructed by using the following algebra:

$$ert ec{p}_{\Lambda_b^0} ert \hat{u}_{\Lambda_b^0} = ec{p}_{D_s} ec{u}_{D_s} + ec{p}_{\Lambda_c}$$

• In this way, the momentum of the Λ_b^0 and D_s can be estimated.

Machine Learning to the rescue !

A set of variables from :

- isolation algorithms.
- kinematics and 3π dynamics.
- background and signal reconstruction.

will be used in a Boosted Decision Tree (BDT) to suppress $\Lambda^0_b o \Lambda_c D^{(0,+)}_{(s)} X$ events.

It is train on MC signal and a set of different simulation of background datasets.

Monte-Carlo simulations

To extract the result we need a really well described background:

- Inputs of the simulation is a cocktail of different channels weighted by their branching fraction
- To populate every background template we need:
 - $\circ\$ careful choices in the inputs
 - lots of generated events
- Also need to correctly take into account the au polarization
- Multiple reweighting are then taken into account (trigger, PID efficiencies, ...)

Fit strategy

An extended binned maximum likelihood fit will be performed to the data.

- **3D fit** using the q^2 , the 3π decay time and the BDT output variable.
- The **signal** is described by the sum of $\tau \to \pi \pi \pi \nu$ and $\tau \to \pi \pi \pi \pi^0 \nu$ components accounting for their branching ratios end efficiencies.
- The background is described by MC simulation and constrained using precisely measured branching fractions.
 - each background category is described by a template.
 - The combinatorial part will be extracted directly from the data.

Conclusion

- Benefit a lot from the $R(D^*)$ analysis (soon to be finished).
- Initial selection in good shape, room for some optimization.
- Some dedicated MC is already available, some still needs to be produced.
- Analysis with both Run1 and Run2 data.
- We aim a result with an uncertainty comparable with published LHCb $R(D^{*})$ result in 2017.

Tank you for you attention !

Any question ?

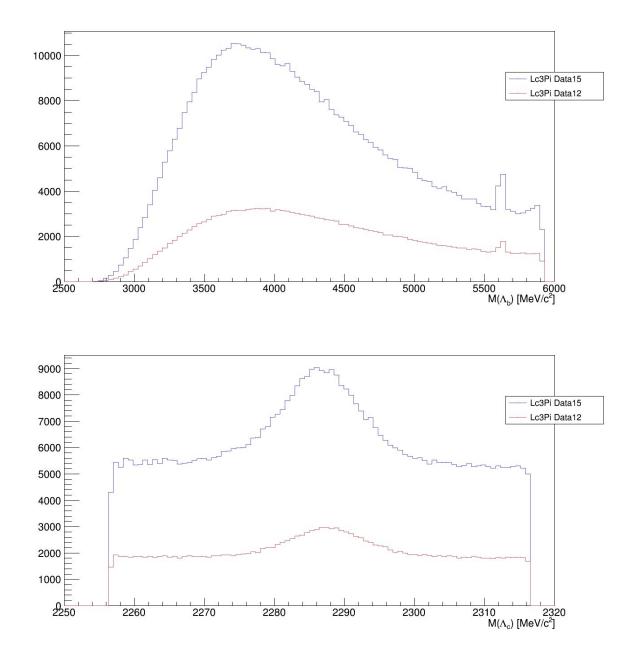
Backups

Normalization procedure

- Three normalisations procedures are possible :
 - $\circ~$ direct : using $\Lambda_c 3\pi$ channel, requires $f_{\Lambda_b^0}$ and ${\cal B}(\Lambda_c o pK\pi)$. (~10% error)
 - crossed : using $\frac{\Lambda_c \tau \nu}{\Lambda_c \mu \nu}$ which will require $\frac{\epsilon_{trig} \times \epsilon_{acc}(3\pi)}{\epsilon_{trig} \times \epsilon_{acc}(\mu)}$ (~10% error).
 - \circ **external** : using theoretical prediction of f_{th} and the precise $\mathcal{B}(B^0 o D^* 3\pi)$ from BaBar (~5% error).

$$egin{aligned} rac{\mathcal{B}(\Lambda_b^0 o \Lambda_c^+ au^- ar{
u}_ au)}{\mathcal{B}(ar{B}^0 o D^{*+} \pi^- \pi^+ \pi^-)} &= rac{N_{obs}(\Lambda_c^+ au^- ar{
u}_ au)}{N_{obs}(\Lambda_c^+ 3 \pi)} imes rac{N_{obs}(\Lambda_c 3 \pi)}{N_{obs}(D^* 3 \pi)} \ & rac{1}{2} rac{N_{obs}(\Lambda_c \mu
u)}{N_{obs}(D^* \mu
u)} imes rac{ au_{\Lambda_b^0}}{ au_{ar{B}^0}} imes f_{th} imes \epsilon_{MC} \end{aligned}$$

Normalization procedure


 f_{th} is defined as follow :

$$rac{\mathcal{B}(\Lambda_b^0 o \Lambda_c \mu
u)}{\mathcal{B}(ar{B}^0 o D^* \mu
u)} = rac{ au_{ar{B}^0}}{ au_{\Lambda_b^0}} imes f_{th}$$

With the help of Stefan Meinel from University of Arizona, the relative uncertainty on f_{th} is ~7-10%

Input	$\frac{\Gamma(\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_\mu)}{\Gamma(\bar{B}^0 \to D^+ \mu^- \bar{\nu}_\mu)}$
DLM+HPQCD	2.47 ± 0.26
DLM+FNAL/MILC	2.30 ± 0.23
DLM+FNAL/MILC+Babar	2.45 ± 0.19
DLM+FNAL/MILC+Babar+Belle	2.37 ± 0.16

comparison of Run1 and Run2 data (preliminary study).

