

Nicolas Tonon

Recherche de la production associée d'un quark top solitaire et d'un boson Z à 13 TeV dans l'expérience CMS Préparation de l'analyse

Stage de recherche – Master 2 Physique Subatomique & Astroparticules

Sous la direction de Jérémy Andrea & Nicolas Chanon

Equipe CMS

Plan

- Le Modèle Standard
- > Le LHC & CMS
- > Le processus tZq
- > Bruits de fond et « faux leptons »

Contextes théorique & expérimental

- > Sélection des événements
- > Exercice de synchronisation
- > Comparaisons Données/Simulations

Mise en place de l'analyse à 13 TeV

> Estimation de bruits de fond à partir des données

> Validation : mesure de section efficace WZ

Développement d'un aspect de l'analyse

Le Modèle Standard

- Décrit les particules élémentaires & leurs interactions
- Bon accord théorie / expérience
 - 2012 : Découverte du boson de Higgs

Le Modèle Standard

- Décrit les particules élémentaires & leurs interactions
- Bon accord théorie / expérience

2012 : Découverte du boson de Higgs

- Plusieurs problèmes
 - Matière noire inexpliquée
 - Masses des neutrinos inexpliquées
 - Masse du Higgs, « ajustement fin »

- ...

Le Grand Collisionneur de Hadrons (LHC)

<u>Run I</u>

- 2010 2012
- $\sqrt{s} = 7 \text{ TeV} \text{ (puis 8 TeV)}$
- Luminosité intégrée ≈ 20 fb⁻¹

Le Grand Collisionneur de Hadrons (LHC)

<u>Run I</u>

- 2010 2012
- $\sqrt{s} = 7 \text{ TeV} (\text{puis 8 TeV})$
- Luminosité intégrée ≈ 20 fb⁻¹

≻ <u>Run II</u>

- 2015 2018
- $\sqrt{s} = 13 \text{ TeV}$
- Haute luminosité

 $N = \mathcal{L} \times \sigma$

- 1 milliard de collisions p-p / seconde
- Luminosité intégrée ≈ 30 fb⁻¹ fin 2016

L'expérience CMS

L'expérience CMS

$$E_T = -|\sum_i \vec{p_T(i)}|$$
 particules visibles de l'état final

i:

- Plusieurs sous-détecteurs spécialisés
- Combinaison des informations par l'algorithme Particle Flow
 - → **Reconstruction** de l'événement (particules, MET, ...)

Les quarks s'hadronisent et engendrent des jets

Description du signal de l'analyse

Le processus tZq

- Production d' 1 quark top solitaire et 1 boson Z
- Processus prédit par le Modèle Standard (MS)
 Non observé durant le Run I

Le processus tZq

- Production d' 1 quark top solitaire et 1 boson Z
- Processus prédit par le Modèle Standard (MS)
 Non observé durant le Run I

 $\sigma_{tZq-SM}^{13\,TeV} = 808 \pm 24\,\mathrm{fb}$

> Sensible aux couplages t-Z & W-Z

 \rightarrow La mesure de σ_{tZq-SM} est un **test important du MS**

> Peut-être produit par Changement de Saveur par Courant Neutre (FCNC) \rightarrow **BSM**

Les bruits de fond de l'analyse

> <u>Etat final</u> : 3 leptons (*e ou* μ) + 1 jet-b + 1 jet léger + MET

<u>Bruits de fond</u> : Signatures expérimentales proches du signal

jets

× WZ, ZZ, WW + jets
×
$$t\bar{t}$$
 + W/Z
× $t\bar{t}$
× Drell-Yan (Z/ $\gamma^* \rightarrow |+|^-)$ +

Les « faux leptons »

- Taux de faux leptons mal modélisé par la simulation Monte-Carlo
 - \rightarrow Il faut estimer ces bruits de fond à partir des données
- Signal et autres bruits de fond estimés par la simulation (théorie + effets de détecteur)

MISE EN PLACE DE L'ANALYSE À $\sqrt{s} = 13$ TeV

Sélection des objets

∽ p _T > 20 GeV	∽ p _T > 20 GeV	• p _T > 30 GeV
∽ η < 2.4	 η < 2.5	~ η < 4.5
 Critères d'identification «serrés» 	 Critères d'identification «serrés» 	 Critères d'identification «relâchés»
 Coupure d'isolation 	 Coupure d'isolation 	
Muons	Électrons	
> <u>Isolation</u> : $Iso \propto \sum_{i \in G}$	$\sum_{cone} \vec{p_T} (i)$ i : particules reconstruites	

 \succ Peu de données \rightarrow Coupures relâchées pour mettre en place les outils d'analyse

Sélection des évènements

Exercice de synchronisation

- Collaboration de chercheurs de 5 pays différents
- Codes et structures d'analyse propres à chaque équipe

 \rightarrow S'assurer que tout le monde effectue les <u>mêmes sélections</u> !

- Comparaison des nombres d'événements après chaque étape de sélection
- Processus long et complexe
- Échange d'informations et de résultats (processus itératif)
- Rôle moteur, prise d'initiatives, contact fréquent (mail, skype, ...)

Synchronisation

≻ Vérification modélisation bruits de fond
 → Région de contrôle

tZq	Total MC		
3.15 ± 0.06	224.71 ± 5.81		

Nb d'événements (echantillons simulés)

ESTIMATION DE BRUITS DE FOND PAR AJUSTEMENT DE MODELES

Principe de la méthode d'ajustement de modèles

- Formes attendues des distributions
 Normalisations des modèles
 Paramètres libres ou contraints
- > Méthode statistique

Modèle distinct pour chaque canal : eee, μμμ, eeμ, μμe

Les modèles

- > Estimation effectuée dans une région de contrôle WZ (+ sensible)
- > Utilisé pour contraindre les bruits de fond dans la région de signal
 - > On exploite la **différence de forme** des distributions de **m_(W)**

Ajustement des modèles

 Les normalisations des modèles « faux électrons » et « faux muons » ont augmenté de ~ +80 % et ~ +30 %

 \rightarrow Le taux de faux leptons semble effectivement être **sous-estimé** par la simulation

Mesure de section efficace WZ

Vérifier que l'ajustement converge et produit des résultats cohérents
 Mesure de section efficace WZ

» WZ traité comme un signal, normalisation libre lors de l'ajustement

$$\sigma(WZ \to l\nu l'l') = 5.73^{+0.69}_{-0.64} \text{ (stat+syst) pb}$$

Compatible avec la valeur théorique utilisée : 5.26 pb

 \triangleright

Conclusion et perspectives

Mise en place de l'analyse

- **Implémentation** du code de sélection pour le groupe ; ~
- Participation active à l'exercice de **synchronisation**;
- Vérifications des accords Données/Simulations dans ~ plusieurs régions de contrôle.

Prise en charge d'un aspect de l'analyse : estimation des bruits de fond contenant

un faux lepton

- Procédure ré-applicable aux nouvelles données ;
 Validation par une mesure de section efficace WZ.

- Intégrer toutes les incertitudes systématiques
- Recherche FCNC

<u>Perspectives</u>

Ajustement des modèles

Les normalisations des modèles qui représentent le comportement des faux leptons ont augmenté

Modèles « faux leptons »

Nb évènements	Avant	Après	Ratio
$\mu\mu\mu$	36.4 ± 1.4	47.3 ± 1.9	a. ⊥30%
$ee\mu$	14.5 ± 0.9	18.8 ± 1.8	/~ +30 /0
eee	8.1 ± 0.9	14.5 ± 1.6	a ⊥80%
$\mu\mu e$	21.5 ± 1.4	38.6 ± 1.6	
All	80.4 ± 2.4	119.2 ± 3.5	$\sim+50\%$

$A pr \dot{e}s$	Total modèles	Données
$\mu\mu\mu$	161.9 ± 2.2	163 ± 13
$ee\mu$	67.7 ± 1.4	66 ± 8
eee	49.6 ± 1.8	46 ± 7
$\mu\mu e$	111.0 ± 2.8	119 ± 11
All	390.2 ± 4.2	394 ± 20

 \rightarrow Le taux de faux leptons semble effectivement être **sous-estimé** par la simulation

tZq et nouvelle physique

- Sensible aux Changements de Saveur par Courant Neutre (FCNC)
- FCNC fortement supprimés dans MS (Mécanisme de GIM)
- Plusieurs extensions BSM prédisent une forte augmentation des FCNC

 $\mathcal{B}(t \to Xq) \sim 10^{-17} - 10^{-12}$, where $X = H, \gamma, Z$ or g. In models beyond SM, branching ratios up to 10^{-3} are predicted 2.

 \rightarrow La mesure de $\sigma_{_{tZq-SM}}$ peut constituer une **porte d'accès vers la nouvelle physique**

Table de synchronisation

$E chantillon \ simul \acute{e} \ tZq \ (avant)$	IPHC	CIEMAT	VUB	Islamabad	Brunel
Avant sélections	200888	200888	200888	200888	200888
1 - Triggers	98446	98446	98446	98446	98446
2 - 3 leptons 'serrés'	7591	6487	6687	6968	9605
3 - Pas de lepton additionnel	7577	6469	6671	6931	9250
4 - Coupure m_{ll}	6986	5965	6154	5993	8448
$5 - \ge 1$ jet	6813	5532	6144	4726	7761
6 - Exactement 1 jet-b	3616	4394	3138	1611	5977
8 - Coupure $m_T(W)$	3237	3931	2814	1441	5977
9 - Coupure m_{top}	2162	2313	2043	1002	1334

E chantillon simulé tZq (a près)	IPHC	CIEMAT	VUB	Islamabad	Brunel
Avant sélections	200888	200888	200888	200888	200888
1 - Triggers	98446	98446	98446	98446	98446
2 - 3 leptons 'serrés'	6487	6487	6487	6487	6487
3 - Pas de lepton additionnel	6469	6469	6469	6477	6476
4 - Coupure m_{ll}	5965	5965	5965	5971	5972
5 - \geq 1 jet	5532	5532	5532	5538	5539
6 - Exactement 1 jet-b	3114	3114	3115	3117	3118
8 - Coupure $m_T(W)$	2795	2795	2794	2796	2797
9 - Coupure m_{top}	1841	1831	1830	1832	1053

TABLE A.1 – Nombres d'évènements obtenus par les différents groupes après chaque étape de sélection. La Table du haut a été obtenue peu après le début de l'exercice de synchronisation, celle du bas contient les derniers chiffres obtenus. La synchronisation est quasiment réalisée entre tous les groupes.

Paramètres de nuisance

FIGURE A.2 – Valeurs après ajustement des paramètres de nuisance, comparées à leurs valeurs initiales ("0"). Les hachures représentent l'incertitude initiale d'un paramètre $(\pm 1 \sigma)$, et la barre d'erreur son incertitude après ajustement. Les paramètres de nuisance pris en compte sont les incertitudes sur les facteurs d'échelle appliqués (voir texte), sur la luminosité, et les

taux de mauvaise identifications des électrons et des muons. Afin de laisser libre la normalisation des bruits de fond contenant un lepton mal identifié, on a fixé les incertitudes initiales des taux de mauvaise identification à 5 fois les écarts gaussiens déterminés par les POG de CMS.