

Propriétés et recherche du boson W' dans un modèle de groupe de jauge $SU(2) \times SU(2) \times U(1)$

Alexis MOLTER

Université de Strasbourg

14 juin 2016

Contexte

Stage de phénoménologie au sein de l'équipe CMS sous la tutelle d'Eric CONTE et Benjamin FUKS

- la physique des particules utilise le modèle standard basé sur la théorie de jauge
- il a de nombreux problèmes, exemple : il ne prédit pas la masse des neutrinos
- il existe des modèles qui veulent résoudre ces problèmes, par exemple en étendant le groupe de jauge
- j'ai du réinterpréter une analyse réalisée dans CMS dans le cadre d'un modèle gauche-droit

Introduction

LHC

- collision proton-proton
- $\sqrt{s} = 13 \text{ TeV}$
- fréquence de collisions : 40 MHz
- Luminosité intégré prévue $(2018):100 \ fb^{-1}$
- 4 grandes expériences

CMS

- Détecteur généraliste
- 12 500 tonnes
- 15 mètres de diamètre, 21,5 mètres de long

Sommaire

Modèle standard minimal gauche-droit

Phénoménologie du boson W'

Recherche du boson W' au LHC

Conclusion

Sommaire

Modèle standard minimal gauche-droit

Phénoménologie du boson W'

Recherche du boson W' au LHC

Conclusion

Modèle standard électrofaible

Un modèle : $SU(2)_L \times U(1)_Y$

	$SU(2)_L$		
Doublet	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}, \begin{pmatrix} u_L \\ e_L \end{pmatrix}$		
Singlet	u_R, d_R, e_R		

 T_L^3 l'isospin faible sous $SU(2)_L$ et Y l'hypercharge associée à $U(1)_Y$

Formule de Gell-Mann et Nishijima : $Q = T_L^3 + \frac{Y}{2}$ Avec Q la charge électrique de la particule

Construction de la dérivée covariante à partir de la théorie de jauge : $D_\mu=\partial_\mu-ig_LW^a_{L\mu}\tau^a-ig_YYB_\mu$

Modèle standard minimal gauche-droit

Un modèle : $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

$SU(2)_R$		SU(2) _L	
$\left(\begin{array}{c} \nu_R \\ e_R \end{array}\right)$	$\begin{pmatrix} u_R \\ d_R \end{pmatrix}$	$\begin{pmatrix} \nu_L \\ e_I \end{pmatrix}$	$\begin{pmatrix} u_L \\ d_I \end{pmatrix}$
/	$\setminus d_R$	' \ e _L)	$\setminus d_L$

 T_R^3 l'isospin faible sous $SU(2)_R$ et B-L la charge faible associée à $U(1)_{B-L}$

Formule de Gell-Mann et Nishijima généralisée : $Q = T_R^3 + T_L^3 + \frac{B-L}{2}$

Construction de la dérivée covariante à partir de la théorie de jauge : $D_{\mu}=\partial_{\mu}-ig_{L}W_{L\mu}^{a}\tau^{a}-ig_{R}W_{R\mu}^{a}\tau^{a}-ig_{B-L}(B-L)X_{\mu}$

$$\mathcal{L}_{ extit{Higgs}} = (D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi) - V(\Phi)$$

$$SU(2)_L imes U(1)_Y o U(1)_{em}$$
 Doublet de higgs : $\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$ avec $\langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$

Boson vecteur	Masse	
$W_{\mu}^{\pm} = \frac{1}{\sqrt{2}}[W_{L\mu}^{1} \mp iW_{L\mu}^{2}]$	$m_W = \frac{e \ v}{2 \sin \theta_w}$	$g_L = \frac{e}{\sin \theta_w}$
$Z_{\mu} = \cos \theta_w W_{L\mu}^3 - \sin \theta_w B_{\mu}$	$m_Z = \frac{e \ v}{2 \sin \theta_w \cos \theta_w}$	$g_Y = \frac{e}{\cos \theta_w}$
$A_{\mu} = \sin \theta_{w} W_{L\mu}^{3} + \cos \theta_{w} B_{\mu}$		

Apparition des bosons du modèle gauche-droit

$$\mathcal{L}_{ extit{Higgs}} = (D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi)$$

1ère brisure :

$$\begin{array}{l} SU(2)_R \times U(1)_{B-L} \to U(1)_Y \\ \text{Doublet de Higgs}: \Phi = \begin{pmatrix} \varphi^+ \\ \varphi^0 \end{pmatrix} \text{ avec } \langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \textbf{\textit{u}} \end{pmatrix}. \end{array}$$

Boson vecteur	Masse
$W'^{\pm}_{\mu} = \frac{1}{\sqrt{2}} [W^1_{R\mu} \mp i W^2_{R\mu}]$	$m_{W'} = \frac{e \ u}{2\cos\theta_w\sin\phi}$
$Z'_{\mu} = \cos\phi W_{R\mu}^3 - \sin\phi X_{\mu}$	$m_{Z'} = \frac{e \ u}{2\cos\theta_w \sin\phi\cos\phi}$
$B_{\mu} = \sin \phi W_{R\mu}^3 + \cos \phi X_{\mu}$	$m_B=0$

$$g_R = rac{\mathrm{e}}{\sin\phi\cos\theta_w}$$
 $g_{B-L} = rac{\mathrm{e}}{\cos\phi\cos\theta_w}$

$$\mathcal{L}_{ extit{Higgs}} + = (extit{D}^{\mu} extit{H})^{\dagger} (extit{D}_{\mu} extit{H}) - V(\Phi, extit{H})$$

2ème brisure :

$$\begin{array}{l} SU(2)_L \times U(1)_Y \to U(1)_{em} \\ \text{Bidoublet de Higgs} : H = \begin{pmatrix} h_1^0 & h_1^+ \\ h_2^- & h_2^0 \end{pmatrix} \text{ avec } \langle H \rangle = \frac{v}{\sqrt{2}} \begin{pmatrix} \cos \beta & 0 \\ 0 & \sin \beta \end{pmatrix}. \end{array}$$

Boson vecteur	Masse	
$W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} [W_{L\mu}^1 \mp i W_{L\mu}^2]$	$m_W = rac{ev}{2\sin heta_w}$	$g_L = \frac{e}{\sin \theta_w}$
$Z_{\mu} = \cos \theta_{w} W_{L\mu}^{3} - \sin \theta_{w} B_{\mu}$	$m_Z = rac{\mathrm{e} v}{2\sin heta_w\cos heta_w}$	$g_Y = \frac{e}{\cos \theta_w}$
$A_{\mu} = \sin \theta_w W_{L\mu}^3 + \cos \theta_w B_{\mu}$	$m_A=0$	

Paramètres du modèle standard

On a 19 paramètres libres :

- 3 constantes de couplage
- 9 masses des quarks et leptons
- une matrice CKM (Cabibbo-Kobayashi-Maskawa): 3 angles et 1 phase
- 1 masse du boson de Higgs
- 1 valeur du vide v
- 1 angle heta en QCD (violation forte de CP)

Paramètres du modèle gauche-droit

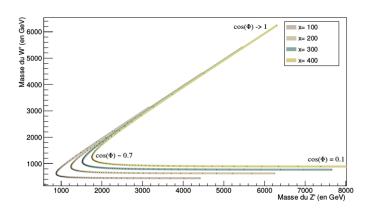
Les 19 paramètres libre du modèle standard et on ajoute :

- 1 angle de mélange ϕ
- 1 valeur du vide supplémentaire qui devient $x = \frac{u^2}{v^2}$
- 3 masses des neutrinos gauches
- 3 masses des neutrinos droits

Paramètres du modèle gauche-droit

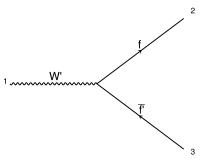
Les 19 paramètres libre du modèle standard et on ajoute :

- ullet 1 angle de mélange ϕ
- 1 valeur du vide supplémentaire qui devient $x = \frac{u^2}{v^2}$
- 3 masses des neutrinos gauches
- 3 masses des neutrinos droits

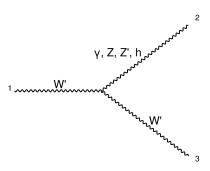

Un total de 21 paramètres libres

Sommaire

Modèle standard minimal gauche-droit

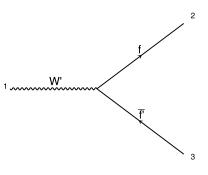

Phénoménologie du boson W'

$$\begin{array}{l} M_{W'} = \frac{e\ v}{2\cos\theta_w\sin\phi}\sqrt{\left(1+x\right)} & \text{Avec } x = \frac{u^2}{v^2} \\ M_{Z'} = \frac{e\ v}{2\cos\theta_w\sin\phi}\sqrt{\left(\cos^2\phi + \frac{x}{\cos^2\phi}\right)} \end{array}$$



Couplages du boson W'

Interactions avec les fermions droits

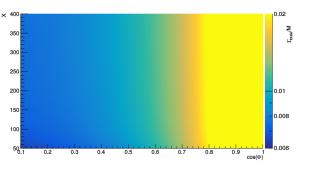


Interactions avec les bosons



Couplages du boson W'

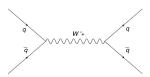
Interactions avec les fermions droits


Interactions avec les bosons

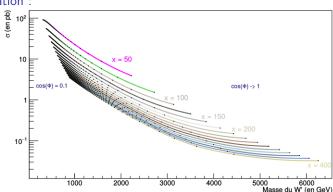
Formule analytique:

$$\Gamma_{totale} = \sum_{qar{q}'} \Gamma(W' o qar{q}')$$

avec
$$\Gamma(W' \to q\bar{q}') = \frac{\sqrt{\lambda(M_{W'}^2, M_{\bar{q}'}^2 M_{\bar{q}'}^2)}}{16\pi M_{W'}^3} \frac{(M_{W'}^2 - (M_{\bar{q}}^2 + M_{\bar{q}'}^2))}{2} \times \frac{e^2}{c_g^2 s_\phi^2} \\ \lambda(M_{W'}^2, m_q^2, m_{\bar{q}'}^2) = (M_{W'}^2 - m_q^2 - m_{\bar{q}'}^2)^2 - 4m_q^2 m_{\bar{q}'}^2$$

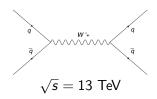


- on veut une résonance étroite
- on prend arbitrairement < 2 %
- on exclut $\cos \phi > 0.79$


Evolution de la section efficace

Formule générale :

$$\sigma = \frac{1}{F} \sum_{ab} \int dx_a dx_b f_{a/p_1}(x_a; \mu_F) f_{b/p_2}(x_b; \mu_F) \hat{\sigma}(\mu_R, \hat{s} = x_a x_b s) dPS$$



Simulation:

Scénarios

	Paramètres		Masse des bosons (GeV)	
Scénarios	X	$\cos\phi$	$M_{W'}$	$M_{Z'}$
I	783	0.786	2000	2541
11	2410	0.786	3500	4454
III	4925	0.786	5000	6366

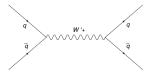
	section efficace (fb)	
Benchmarks	σ	
I	522	
II	13	
III	0.2	

Sommaire

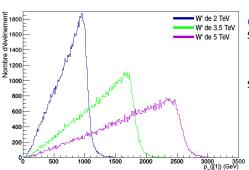
Modèle standard minimal gauche-droit

Recherche du boson W' au LHC

Plateforme logiciel


LHC

- Feynrules : extraction des règles de Feynman
- MadGraph 5 : processus "durs"
- Pythia 8 : processus "doux"

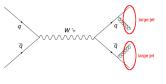


CMS

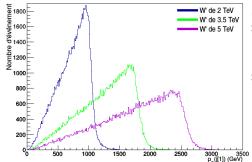
- Delphes 3 : simulation rapide
- MadAnalysis 5 : implémentation des analyses de CMS

- Signature : 2 jets de haute impulsion transverse
- Bruit de fond : processus QCD

CMS-EXO-15-001


Sélection en ligne :

• $p_T > 500 \text{ GeV}$ ou $H_T > 800 \text{ GeV}$


Sélection hors ligne :

- $p_T^{jet} > 30 \text{ GeV et } |\eta| < 2.5$
- Construction de large jet : $\Delta R(\text{jet principal}, \text{jet}) < 1.1$
- Construction de la masse invariante : $|\Delta \eta$ (" large jet", " large jet")| < 1.3

Recherche du W' en jj

- Signature : 2 jets de haute impulsion transverse
- Bruit de fond : processus QCD

CMS-EXO-15-001

Sélection en ligne :

• $p_T > 500$ GeV ou $H_T > 800$ GeV

Sélection hors ligne :

- $p_T^{jet} > 30 \text{ GeV et } |\eta| < 2.5$
- Construction de large jet : $\Delta R(jet \ principal, jet) < 1.1$
- Construction de la masse invariante : |Δη(" large jet", " large jet")| < 1.3

Recherche du W' en jj

CMS-EXO-15-001

- Un modèle théorique différent
- Limite sur la masse du W' de 2.6 TeV

Pour mettre des limites sur notre modèle, il faut effectuer une réinterprétation des mesures de CMS

Sommaire

Modèle standard minimal gauche-droit

Conclusion

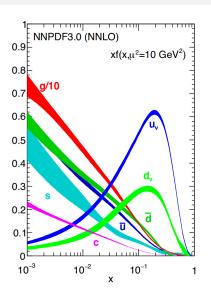
Conclusion

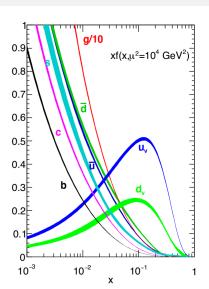
J'ai étudié :

- le secteur de électrofaible du modèle gauche-droit basé sur une extension du groupe de jauge
- les propriétés du W' en fonction des paramètres du modèle
- la recherche du W' en jj au LHC

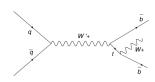
Perspectives:

- produire des événements de signaux plus réaliste
- W' en jj : exclusion des régions en ϕ et x
- W' en tb : implémenter les outils de reconstruction d'objet boosté et étudier leurs performances

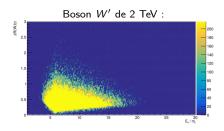

Merci de votre attention

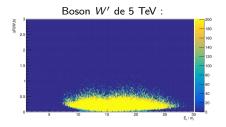

Avez-vous des questions?

Autres modèles


Modèle	SU(2) ₁	SU(2) ₂	$U(1)\chi$
Gauche-droite (LR)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}$, $\begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	$\begin{pmatrix} u_R \\ d_R \end{pmatrix}, \begin{pmatrix} \nu_R \\ e_R \end{pmatrix}$	X = B - L pour les fermions
Lepto-phobique (LP)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}, \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	$\begin{pmatrix} u_R \\ d_R \end{pmatrix}$	X = B - L pour les quarks $X = Y$ pour les leptons
Hadro-phobique (HP)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}, \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	$\begin{pmatrix} \nu_R \\ e_R \end{pmatrix}$	X = Y pour les quarks $X = B - L$ pour les leptons
Fermio-phobique (FP)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}, \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$		X = Y pour les fermions
Non-unifié (UU)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}$	$\begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	X = Y pour les fermions
Non-universel (NU)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}_{1^{\text{st}},2^{\text{nd}}}, \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}_{1^{\text{st}},2^{\text{nd}}}$	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}_{3^{rd}}, \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}_{3^{rd}}$	X = Y pour les fermions

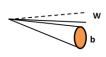
PDF





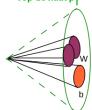
Recherche du W' en tb

- $t \rightarrow W \bar{b}$
- boost $\equiv \frac{E_t}{m_t}$
- Relation entre le boost et la distance relative entre W et \bar{b}



Recherche du W' en tb

Désintégration leptonique du W (CMS-B2G-15-004)


Top de haut p_T

	Masse du boson W' (GeV)		
	2000	3500	5000
Monte-Carlo	50 000	50 000	50 000
Muons isolés	12 000±110	6 000±77	4 000±63

Désintégration hadronique du W

Top de haut p₊

Utilisation d'algorithme spécifique