For the JUNO Collaboration

Optimisation of the Top Tracker veto detector in the JUNO experiment Master thesis defence

COTTE Philippe under tutorship of Dr. Cécile Jollet-Meregaglia

June 14, 2016

Goal of my internship

- ► JUNO experiment: detects ve
- **Background** cosmic muons $\Rightarrow {}^{9}Li/{}^{8}He$ isotopes
- Muons detected by Cerenkov central detector and plastic scintillator detector (Top Tracker)

Goal: Optimize the muon reconstruction with the Top Tracker

Overview of presentation

- 1. Neutrino oscillations now
- 2. JUNO detector
- 3. Muon veto detector
- 4. Top Tracker
- 5. Results and conclusion

Neutrino oscillations

Pontecorvo-Maki-Nakagawa-Sakata matrix and oscillations parameters

PMNS matrix

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \overbrace{ \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix}}^{\nu_{1}} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

PMNS contains:

 $\{i; j\} = 1, 2 \text{ or } 3$

Pontecorvo-Maki-Nakagawa-Sakata matrix and oscillations parameters

PMNS matrix

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \overbrace{ \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix}}^{\nu_{1}} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

PMNS contains:

Probability of oscillation:

► cosθ_{ij}
 ► sinθ_{ii}

 $\triangleright e^{-1\delta}$

$$P_{(
u_{lpha}
ightarrow
u_{eta})} = |\langle
u_{eta} |
u_{lpha}(t)
angle|^2$$

 $\{i; j\} = 1, 2 \text{ or } 3$

Pontecorvo-Maki-Nakagawa-Sakata matrix and oscillations parameters

PMNS matrix

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \overbrace{ \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix}}^{\nu_{1}} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

PMNS contains:

Probability of oscillation:

 $\triangleright e^{-1\delta}$

$$P_{(\nu_{lpha} o
u_{eta})} = |\langle
u_{eta} |
u_{lpha}(t)
angle|^2$$

 $\{i; j\} = 1, 2 \text{ or } 3$

$$\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4E}$$

$$\bullet \Delta m_{ij}^2 = m_i^2 - m_j^2$$

 $P_{(\vec{\nu_e} \to \vec{\nu_e})} = 1 - \sin^2 2\theta_{12} c_{13}^4 \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \left(c_{12}^2 \sin^2 \Delta_{31} + s_{12}^2 \sin^2 \Delta_{32} \right)$

Parameter	Best fit	1σ	Best fit	1σ	
	Normal mass ordering $(m_1 < m_2 < m_3)$		Inverted mass ordering $(m_3 < m_1 < m_2)$		
Δm_{21}^2	$7.54 imes 10^{-5} \text{ eV}^2$	3.2%	$7.54 \times 10^{-5} \text{ eV}^2$	3.2%	
$ \Delta m_{31}^2 $	$2.47 imes 10^{-3} \mathrm{eV^2}$	2.4%	$2.42 \times 10^{-3} \text{ eV}^2$	2.5%	
$sin^2\theta_{12}$	0.308	5.5%	0.308	5.5%	
$sin^2\theta_{13}$	2.34×10^{-2}	8.3%	2.40×10^{-2}	8.5%	
$sin^2\theta_{12}$	0.437	6.4%	0.455	19%	
δ (rad)	4.37	23%	4.12	24%	

From combined studies of several groups ¹

¹ F.Capozzi, G.L. Fogli, E.Lisi, A.Marrone, D.Montanino and A.Palazzo, *Phys. Rev. D* 89 (2014) [arXiv:1312.2878 [hep-ph]] D.V.Forero, M.Tortola and J.W.F.Valle, *Phys. Rev. D* 90 (2014) [arXiv:1405.7540 [hep-ph]] M.C.Gonzalez-Garcia, M.Matlioni and T.Schewtz, *JHEP* 1411 (2014) [arXiv:1405.4549 [hep-ph]]

Parameter Best fit		1σ	Best fit	1σ	
	Normal mass ordering $(m_1 < m_2 < m_3)$		Inverted mass ordering $(m_3 < m_1 < m_2)$		
Δm_{21}^2	$7.54 imes10^{-5}~\mathrm{eV^2}$	3.2%	$7.54 imes10^{-5}~\mathrm{eV^2}$	3.2%	
$ \Delta m_{31}^2 $	$2.47 \times 10^{-3} \text{ eV}^2$	2.4%	$2.42 imes 10^{-3} \text{ eV}^2$	2.5%	
$sin^2\theta_{12}$	0.308	5.5%	0.308	5.5%	
$sin^2\theta_{13}$	2.34×10^{-2}	8.3%	2.40×10^{-2}	8.5%	
$sin^2\theta_{12}$	0.437	6.4%	0.455	19%	
δ (rad)	4.37	23%	4.12	24%	

Sign ? + or - ?

Known values

Two orders of magnitude between Δm_{32}^2 and Δm_{12}^2 !

Known values

Two orders of magnitude between Δm_{32}^2 and Δm_{12}^2 !

Mass hierarchy in JUNO

- ► Distance: 53 Km from nuclear reactors
- Energy: need $3\%/\sqrt{E}$ precision

Liang Zhan, Yifang Wang, Jun Cao, Liangjian Wen, Phys. Rev. D 78 (2008) [arXiv:0807.3203[hep-ex]] Liang Zhan, Yifang Wang, Jun Cao, Liangjian Wen, Phys. Rev. D 79 (2009) [arXiv:0901.2976[hep-ex]]

General presentation

Inverse β decay events signature

$$ar{
u_e} + p
ightarrow e^+ + n$$

Inverse β decay events signature

$$\bar{\nu_e} + p \rightarrow e^+ + n$$

Background: cosmogenic isotopes from cosmic muons

⁹*Li*/⁸*He* decay through $\beta - n$: β mimics e^+ and *n*... mimics *n*.

Impact on statistics

Expectations

83 Inverse β Decay (IBD) events per day VS 84 ${}^{9}Li/{}^{8}He$ events per day. Need to tag background!

Impact on statistics

Expectations

```
83 Inverse \beta Decay (IBD) events per day VS 84 ^9Li/^8He events per day.
```

Need to tag background!

Half life: 178 ms and 119 ms

- \rightarrow veto all detector for 1.2 s? Too long.
- \rightarrow Reconstruct path of muons and veto a volume around it
- \rightarrow Need a good precision in reconstruction!

Muon veto detector

Central detector to tag muons

Central detector:

- 99% tagging efficiency for single muons
- Reconstruction algorithm complicated

Top Tracker:

- Plastic scintillator detector from OPERA
- Well-known technology
- Efficiency around 90%
- ► Covers one diameter ⇒ symmetry
- \Rightarrow Validate tracking from central detector

Top Tracker in details

OPERA Target Tracker reconverted

- TT = 62 walls
- Wall = 2×4 modules
- Module = 64 strips

- Strip = plastic+wavelength shifting fiber
- ▶ 6.7 m × 26.4 mm
- Detection on **both sides** by Photo Multiplier Tubes (PMs)

Optical cross talk

- PM = pixels
- ► ⇒ 1 PM per module

- Photon can trigger wrong channel
- ► ⇒ Can loose position information

One PM reads 64 strips

57	58	59	60	61	62	63	64
49	50	51 15	52 16	53 17	54	55	56
41	42 6	43 7	44 8	45 9	46 10	47	48
33	34 -2	35 -1	36 0	37 1	38 2	39	40
25	26 -10	27 -9	28 -8	29 -7	30 -6	31	32
17	18	19 -17	20 -16	21 -15	22	23	24
9	10	11	12	13	14	15	16
1	2	3	4	5	6	7	8

Top Tracker performance

Simulation done with GEANT4 and analysis with ROOT

Resolution : definition

Resolution : impact of cross talk

Resolution : impact of cross talk

Events with resolution > 60 cm : $0.14\pm0.05\% \rightarrow 2.12\pm0.2\%$

Cross talk filter

1–Who is real in the module?

Strip with max left+right photo electrons

2-Cross talk Criteria

- Geometric
- Number of photo electrons : cross talk = stochastic

57	58	59	60	61	62	63	64
49	50	51 15	52 16	53 17	54	55	56
41	42 6	43 7	44 8	45 9	46 10	47	48
33	34 -2	35 -1	36 0	37 1	38 2	39	40
25	26 -10	27 -9	28 -8	29 -7	30 -6	31	32
17	18	19 -17	20 -16	21 -15	22	23	24
9	10	11	12	13	14	15	16
1	2	3	4	5	6	7	8
	57 49 41 33 25 17 9 1	57 58 49 50 41 42 33 34 -2 25 25 26 -10 17 9 10 1 2	57 58 59 41 62 43 33 34 35 75 26 27 17 18 19 9 10 11 1 2 3	57 58 59 60 49 50 51 52 41 42 43 48 33 34 25 26 25 26 72 28 17 18 19 26 9 10 11 12 1 2 3 4	57 58 59 60 61 49 50 51 52 53 41 42 43 44 49 33 42 35 36 37 25 26 -7 28 -9 17 18 -17 2.6 2.15 9 10 11 12 13 1 22 3 4 5	57 58 59 60 61 62 49 50 51 56 53 54 41 42 43 48 45 46 33 42 35 36 37 38 75 56 27 88 29 30 17 18 19 20 31 14 9 10 11 12 13 14	57 58 99 60 61 62 63 49 50 51 52 51 54 55 41 42 43 44 45 46 47 33 34 35 56 31 32 39 75 56 7.7 8.8 2.9 30 31 17 18 19 2.0 2.1 2.2 2.3 9 10 11 12 13 14 15 1 2 3 4 5 6 7

Cross talk filter

1–Who is real in the module?

Strip with max left+right photo electrons

2-Cross talk Criteria

- Geometric
- Number of photo electrons : cross talk = stochastic

57	58	59	60	61	62	63	64
49	50	51 15	52 16	53 17	54	55	56
41	42 6	43 7	44 8	45 9	46 10	47	48
33	34 -2	35 -1	36 0	37 1	38 2	39	40
25	26 -10	27 -9	28 -8	29 -7	30 -6	31	32
17	18	19 -17	20 -16	21 -15	22	23	24
9	10	11	12	13	14	15	16
1	2	3	4	5	6	7	8

Define a coefficient

$$coef = \frac{False positive}{efficiency}$$

Small coef means more cross talk tagged and less good events killed

Test criteria

$\begin{array}{l} \mbox{Hit=photo electrons on right PM and left PM} \\ \Rightarrow \mbox{Criteria: left+right, left} , \mbox{left+right, left+right, left+right, left+right, left+right, of real hit} \end{array}$

Resolution after filter

Best criteria :

Geometric **and** left+right < 3 PE **and** sum/sum max < 0.3

Resolution after filter

Best criteria :

Geometric and left+right < 3 PE and sum/sum max < 0.3

Results

Mean resolution : 22 ± 11 cm Events with resolution > 60cm : $0.16\pm0.06\%$ $1.7\pm0.8\%$ loss of muon tagging efficiency

⁹Li/⁸He rates

Rate of ${}^{9}Li/{}^{8}He$: $R_{Li} = \sum_{i=1}^{N} \left(E_{i}^{0.74} \times Length \right) \frac{0.0215}{time}$

	R_{μ} (Hz)	⁹ Li/ ⁸ He
		per day
central detector	3.7	85.9
central detector and TT	1.1(30%)	25.8(30%)

 \Rightarrow 30% of muons cut out with a volume of 3 m radius \Rightarrow Limit = geometric acceptance

Angular distributions

 \Rightarrow No straightforward deduction of total muon distribution from Top Tracker

 \Rightarrow But no dead angles: can use TT to validate central detector tracking and extrapolate to whole detector

Conclusion

- Spatial resolution: 22 ± 11 cm (18 ± 10 without cross talk)
- Number of bad events: 0.16±0.06% (0.14±0.05% without cross talk)
- ► 1.7±0.8% loss of muon tagging efficiency could be harmful for ⁹Li/⁸He tagging
- Angular reconstruction: more work needed
- Next step: reconstruct showering muons

Thanks for your attention!

Neutrino oscillation probability

Relative strip difference

- ionisation process: $10^4 \gamma_{uv-blue}/MeV$
- Solvent: Linear alkyl benzene (LAB)
- Scintillating fluor: PPO (2,5- diphenyloxazole) at 3 g/L
- Wavelength shifter: Bis-MSB at 15 mg/L
- Light yield: Minimum of 1,100 photoelectrons per MeV
- Transparency: Attenuation length at 430 nm: > 22 m