CARDIFF UNIVERSITY PRIFYSGOL

Quasi-optical Components for Polarisation Modulation

Giampaolo Pisano

Astronomy Instrumentation Group - Cardiff University

Towards the European Coordination of the CMB programme, Villa Finaly, Firenze, 9/9/2016

Polarisation modulation options

Polarisation modulation options: Trade-Off studies

ESA-TRP collaboration **Cardiff Manchester Rome RAL**

RF performance	Transmission modulators				Reflection modulators			
Mechanical modulation	Rotation				Rotation		Translation	
Material	Birefringent crystal		Metal grids		Metal grids + Flat mirror			
Modulator type	Single Plate	Multi-Plate Pancharatnam	Air-gap Mesh-HWP	Embedded Mesh-HWP	Air-gap Reflective HWP	Embedded Reflective HWP	Variab. delay Polarization Modulator (VPM)	Translational Polarization Rotator (TPR)
Modulator sketch	B-HWP →	BP-HWP	M-HWP │ →	EM-HWP	R-HWP →	ER-HWP →	∨РМ 	TPR
Modulated Stokes parameters	Q & U	Q & U	Q & U	Q & U	Q & U	Q & U	Q or U	Q & U
Maximum bandwidth	Narrow	Very Broad ~110%	Broad ~80%	Broad ~100% T3.1	Narrow	Narrow T3.1	Narrow	Narrow
Multiple sub-bands	Need periodic ARC	Limited to max BW	Limited to max BW	Lim. to max BW T3.1	Periodic	Periodic T3.1	Periodic	Limited by QWP BW
Modulation efficiency	> 99%	> 99%	> 99%	> 99% T4.1a,b, 5.1,2	> 90%	> 90% T4.1a,b, 5.1,2	> 90%	> 90%
Transmission / Differential transmission	> 90 % < 1 %	> 90 % < 1 %	> 90 % < 1 %	> 90 % / < 1 % T4.1a,b, 5.1,2	Not applicable	Not applicable	Not applicable	Not applicable
Reflection/ Differential Reflection	3% 0.1%	3% 0.1%	4% 2%	<4% / 2% T4.1a,b, 5.1,2	> 98 % < 1 %	> 98% / < 2% T4.1a,b & 5.1	> 98 % < 1 %	> 98% / < 2%
On-axis Average Cross-Polarisation	< -20 dB (6% BW)	< -20 dB (110% BW)	<-20dB (80%BW)	-35dB (25% BW) T4.1a,b, 5.1,2	<-30dB	Not available T4.1a,b & 5.1	Not Available	Not available
Co-Polar beam impact Ellipticity	Not available	Not available	Not available	~1% (25% BW) T4.1c & 5.1	<1%	Not available T4.1c & 5.1	Not available	Not available
Cross-Polar beams	Not available	~ -30dB	Not available	<-35dB (25%) T4.1c & 5.1	<-30dB	Not available T4.1c & 5.1	Not available	Not available
Flatness / Homogeneity	Very high	High	High	High T4.1d & 5.1	High	High T4.1d & 5.1	High	High
Advantage		Disadvantage		Not	Not usable		Will be verified by Task #	

Transmissive HWPs: Options

- Mesh HWP (M-HWP):
 - Based on mesh filters technology
 - Large diameters achievable
 - Bandwidths ~100%

Mesh Half Wave Plates: Embedded design

Embedded Mesh HWP: NIKA waveplate

Frequency [GHz]

Embedded Mesh HWP: NIKA2 waveplate tests

45 degrees cross-polarization leakage

Frequency [GHz]

Delivered (data analysis phase):

- CASPER (110-300GHz, BW93%)
- NIKA (150+250GHz, BW98%)
- NIKA2 (150+250GHz, BW98%)

Manufacture phase:

- **ASTE** (305GHz BW43%, 520GHz BW73%)
- LSPE (140+220+240GHz, BW70%, 500mmØ)
- BLAST-TNG (600+857+1200GHz, BW92%)

Design phase:

- ACT-Pol (HF) (150+230GHz, BW73%)
- QUBIC (150+220GHz, BW73%)

Under evaluation:

- LiteBIRD
- GISMO2
- CLASS (MQWP)

Reflective HWPs: Options

• Reflective HWP (R-HWP)

- Based on fragile free-standing wire-grid parallel to a mirror
- Periodic narrow bands

- Embedded Reflective HWP (ER-HWP)
 - Based on the more robust dielectrically embedded mesh filters technology
 - Large dimensions
 - Very large bandwidths

Reflective HWPs: Air-gap RHWP

 \rightarrow Periodic narrow bands

Electric and Magnetic Mirrors: Theory

- Perfect Magnetic Conductors do not exist in nature

Magnetic Mirror (Artificial Magnetic Conductor): Concept 1/3

- Standard designs based on resonant structures
- In-phase reflection across narrow bandwidths
- These devices are lossy

- However, there is a simpler way..

 We can get in-phase reflection at a high-to-low refractive index interface

Magnetic Mirror (Artificial Magnetic Conductor): Concept 2/3

С AMC PEC $\Gamma \cong +1$ $\Delta \phi = 0$ ¢ Z_0 Z_1 Z_2 Z_3 Z_0 $\lambda_2/4$ $\lambda_1/4$ $\lambda_3/4$ $\lambda_0/4$ n_0 $n_1 n_2 n_3 n_0$ Gradient index $-\lambda_0/4n_i$ n_3 n_2 n_{i}

- Radiation needs to travel into a high index medium
- We need to match the free space with this medium
- We need to reach a high refractive index

- We can discretise the gradient into quarter-wavelength layers
- Unfortunately, there are not many materials available with the required refractive indices

Magnetic Mirror (Artificial Magnetic Conductor): Concept 3/3

- We can design metamaterials to build up the gradient index
- We adopt the mesh-technology
- Most of the structure is embedded in polypropylene

- Standard AMC realisations operate across narrow bandwidths
- Our design has performances superior to any device ever realised

Artificial Magnetic Conductor: Prototype realisation

G. Pisano et al. Applied Optics (2016)

- We realised a prototype with both PEC and AMC surfaces

Artificial Magnetic Conductor: Experimental results

G. Pisano et al. Applied Optics (2016)

- The results are in very good agreement with the predictions

Embedded Reflective HWP: Concept

ESA-TRP collaboration

Cardiff, Manchester, Rome, RAL

Embedded AMC & PEC

- We add a wire-grid into the high-to-low index interface
- One polarisation 'sees' the PEC, the orthogonal one 'sees' the AMC

ER-HWP tests: Polarisation and rotation angles

Embedded Reflective HWP: FTS measurements

ESA-TRP

collaboration

Embedded Reflective HWP: FTS measurements

ESA-TRP collaboration Cardiff Manchester Rome RAL

Polarisation modulation efficiency

Embedded Reflective HWP: FTS measurements

ESA-TRP

collaboration

ER-HWPs: Larger and multiple bandwidths

ER-HWP

ER-HWP Beam Impact Tests: Experimental setup

B. Maffei

B. Maffei

- 2D far-field map measurements
- Fitted with elleptical beam
- Ellipticity deduced

Beam cuts from measured 2D maps

ER-HWP Beam Impact Tests: Beam maps

B. Maffei

Map Horn + Mirror

 \rightarrow Increase of ellipticity ~ 1%

ER-HWP Beam Impact Tests: Cross-polar beam maps

B. Maffei

Large HWP cryogenic rotation mechanism

Rome

Cryogenic rotator (step) for the PILOT experiment (Salatino et al. A&A 2011)

Worked flawlessly in flight, sept. 20, 2015

- In COrE, the polarization modulator was large and was the first optical element.
- A smaller polarization modulator (reflective or refractive) can be placed between the telescope and the focal plane.
- Option under study.

Similar design for COrE, thoroughly studied by the Rome group

ER-HWP cryogenic tests: Thermal gradients

- Measurement of thermal gradients on 160mm diameter, 0.5mm thick samples, under representative radiative background.
- Custom setup in *Rome* Sapienza: PT refrigerator and diffuse BB source with reduced emissivity.
- Polyethylene alone: $\Delta T = 4K$
- ER-HWP (similar thickness): $\Delta T < 0.3K$

Rome

Conclusions

- We have studied in details two polarisation modulation solutions
- Transmissive Mesh-HWP
 - Proved to work across ~90% BWs
 - ~100% BWs achievable
 - ~150% BWs would require a different working principle

Embedded Reflective HWP

- Proved to work across ~150% BWs
- 160-170% BWs achievable
- Periodic bands can also be used
- Ongoing RF tests
 - Characterisation/understanding of the HWP systematics of both solutions
- Ongoing thermo-mechanical tests
 - Rotation mechanism
 - Quantification of the HWPs gradient temperatures and emissivities