SIMONS OBSERVATORY

Suzanne Staggs

FIRENZE, 9 SEPT 2016 Towards the European Coordination of the CMB programme

United States

- Carnegie Mellon University
- Columbia University
- Cornell University
- Dunlap Institute/Toronto
- Florida State
- Haverford College
- Johns Hopkins University
- Lawrence Berkeley National Laboratory
- NASA/GSFC
- NIST
- Princeton University
- **Rutgers University**
- Stanford University/SLAC
- Stony Brook
- University of California Berkeley
- University of California San Diego
- University of Colorado
- University of Illinois at Urbana-Champaign
- University of Michigan
- University of Pennsylvania
- University of Pittsburgh
- West Chester University

Collaboration Canada

- 8 Countries
- 45+ Institutions
 - 150+ members

- CITA/Toronto Dalhousie University
- Dunlap Institute/Toronto
- McGill University
- University of British Columbia

Chile

- Pontificia Universidad Catolica
- University of Chile

Europe

- APC France
- Cardiff University
- Imperial College
- Manchester. University
- Oxford University
- SISSA Italy
- Japan
- KEK
- IPMU
- South Africa
- Kwazulu-Natal,

MONS OBSERVATORY SITE

MONS OBSERVATORY SITE

CLASS

POLARBEAR/SIMONS ARRAY

ACT

MONS OBSERVATORY SITE

CLASS

POLARBEAR/SIMONS ARRAY

MONS FOUNDATION ing Research in Basic Science and Mathematics

SIMONS SOCIETY OF FELLOWS | DATA RESOURCES | FOUNDATIO

ATHEMATICS & PHYSICAL SCIENCES

LIFE SCIENCES

AUTISM RESEARCH

EDUCATION & OUTREA

Simons Observatory to Search for Origin of the Cosmos

Learn more

MAY 2016

WHAT IS THE SIMONS OBSERVATORY?

GROUND-BASED CMB OBSERVATORY IN CHILE, UNDER DEVELOPMENT

- ACT + SIMONS ARRAY TEAMS ++ SIMONS FOUNDATION FUNDING: \$40M JNIVERSITY & LAB FUNDING: \$5M
- UCSD
- BERKELEY/LBNL
- U PENN
- PRINCETON

United States

- Carnegie Mellon University
- Columbia University
- Cornell University
- Dunlap Institute/Toronto
- Florida State
- Haverford College
- Johns Hopkins University
- Lawrence Berkeley National Laboratory
- NASA/GSFC
- NIST
- Princeton University
- **Rutgers University**
- Stanford University/SLAC
- Stony Brook
- University of California Berkeley
- University of California San Diego
- University of Colorado
- University of Illinois at Urbana-Champaign
- University of Michigan
- University of Pennsylvania
- University of Pittsburgh
- West Chester University

Collaboration Canada

- 8 Countries
- 45+ Institutions
 - 150+ members

- CITA/Toronto Dalhousie University
- Dunlap Institute/Toronto
- McGill University
- University of British Columbia

Chile

- Pontificia Universidad Catolica
- University of Chile

Europe

- APC France
- Cardiff University
- Imperial College
- Manchester. University
- Oxford University
- SISSA Italy
- Japan
- KEK
- IPMU
- South Africa
- Kwazulu-Natal,

THE SIMONS OBSERVATORY COMBINES THE ACT AND SIMONS ARRAY TEAMS

CT & the Simons Array will operate independently with current NSF/MSIP awards (until 2018/2019). or now: ACT & the SA will develop and begin sharing site infrastructure. LASS is not currently part of the Simons Observatory. We will work to share infrastructure.

ATACAMA COSMOLOGY TELESCOPE (ACT) PRELIMINARY ACTPOI SPECTRA D56 Field (<15% of the ACTPol data) Angular scale 90° 10 0.2° 0.1° 0.04 E. Calabrese for ACT 10³ ACTPo ACT Planck 10^{2} SPT SPTpol POLARBEAR $\mathcal{D}_{\ell} \left[\mu \mathsf{K} ight]^2$ 10^{1} ACT: 6m telescope at 5200 m in Chile ACTPol Camera: 2013-2015, 150 & 90 GHz 10^{0} 1.4' at 150 GHz D56 Field: ~ 650 deg², @ δ ~ -3°, RA ~ 15° 10^{-1} 180 *⁄*500 1500 3000 5000 Multipole ℓ

ATACAMA COSMOLOGY TELESCOPE HWPS & MULTICHROIC DETECTOR ARRAYS

SIMONS ARRAY (STAGE-3)

220/280 GHz

Simons Array (= 3x POLARBEAR-2)

- 22,764 bolometers
- Resolution : 3.5' @150GHz

90/150 GHz

- 4 frequency bands (95/150/220/280 GHz)
- Deep + Wide sky surveys (f_{sky}=65% visible)

SIMONS ARRAY FOCAL PLANE AND READOUT

MHA CHIFES

© 2016 Basarsoft © 2016 Google Data SIO, NOAA, U.S. Navy, NGA, GEBCO US Dept of State Geographer

Google earth

- Mid latitude site (23° south): access to over half the sky.
- High (5,200 m) and dry: Exceptional Observing

Movie courtesy of Mark De

Lots of sky visible Overlap with optical surveys for cross-correlation work (ANTHONY CHALLINOR TALK YESTERDAY) ACTPOL FIELDS (2013-2015)

de Bernardis et al, 2016; arXiv: 1607.

HALF THE SKYSS

de Bernardis et al, 2016; arXiv: 1607

ADVACT FIELDS 17,000 deg² ~ HALF THE SKY!

De Bernardis et al, 2016; arXiv: 1607

- Existing (and growing!) facilities.
- Significant infrastructure available: ALMA, mining
- Easy access: < 24 hours door to site.

SIMONS OBSERVATORY GOALS

- PRIMORDIAL GRAVITATIONAL WAVES (B-MODE TENSOR FLUCUTATIONS)* NEUTRINO MASS, N_{eff}, DYNAMIC HISTORY (w, modified gravity)* via:
- CMB lensing
- Cross-correlations
- Cluster survey to trace matter; kSZ to trace velocity fields OTHER WINDFALLS -- primordial magnetic fields, parity violation

* See yesterday's talks from Ringeval, Challinor, Carlstrom

SIMONS OBSERVATORY GOALS

The Simons Observatory will:

- incorporate several new telescopes at the site in Chile and
- deploy new cameras with state of the art detector arrays. An overarching goal is to help set the stage for CMB-S4

SIMONS OBSERVATORY PLANS

- New telescopes.
 - Sizes and configuration TBD.
- Significant Infrastructure Upgrades.
 - Power, internet, and logistics.
- Technology Development:
 - Detectors, Optics, Telescopes, Receivers.

 Coordinate the telescope and receiver designs to take advantage of the scale of the project.

The Simons Observatory and S4

SIMONS OBSERVATORY: STEPPING STONE TO FUTURE CMB S4 CHILE SITE

imons Observatory prototypes to accelerate S4 process
S4-capable telescopes, shielding, cold optics
S4-capable cryostats, focal planes, muxing

- Prototyping jumpstarts the S4 Chile site, but aims to aid CMB-S4 globally
- Work designed to complement CMB-S4 funding from NSF and the DOE

The Simons Observatory Structure & Planning

- Mark Devlin: spokesperson
- Brian Keating; director
- Project Manager: identified
- Planning Committee: providing oversight of boards
- Science & Technical Boards: under way, guiding Working Groups

THE SCIENCE BOARD

- In the context of S4, what are the goals of the SO?
- What sensitivities are needed vs I and f for those goals?
- Work with Technical Board to optimize configuration
- Working Groups:
 - Time Domain
 - Measuring r
 - Parameters from high-l
 - > Lensing
 - Clusters/SZE
 - Extragalactic Sources
 - Optimization

THE TECHNICAL BOARD

Review status of existing technologies Identify enabling technologies for early study Work with Science Board to optimize configuration Working Groups:

- Cryogenics and Interfaces
- Cameras and Cold Optics
- Detectors and Readouts
- Large Aperture Telescopes
- Small Aperture Telescopes
 Site

SIMONS OBSERVATORY INFRASTRUCTURE

ALMA

Infrastructure in Preparation for CMB S4.

– 500 KVA power plant

ACT

control vehicles

Power

- Combined control room
- Telescope/receiver staging building
- High bandwidth internet connection to ALMA
- Two Site Engineers + Technician

Existing

Simons Array

CLASS

Simons Observatory Phase 1

Pads for Simons Observatory Phase 2 and CMB S4

SIMONS OBSERVATORY: ROUGH TIMELINE

anning and Technology Development: 2016-2017 ogrades to the site infrastructure: 2016-2018 onstruction and installation of telescopes by end of 2020. oduction of new CMB-S4-type receivers with partially filled foce anes by end of 2020. oserving: 2021-2022

