Large format arrays of antenna coupled Kinetic Inductance Detectors for cosmology

J. Baselmans, J. Bueno, O. Yurduseven, N. Llombart, S. Yates, A. Baryshev, A. Endo, D. Thoen, A. Neto

http://arxiv.org/abs/1609.01952

MKID principle of operation

Superconducting film

Inside a microwave resonance circuit

Capable of coupling to radiation

- Q ~ $|0^4 |0^6$
- F ~ I I 0 GHz

MKID principle of operation

Flexible: Any frequency you want

330-400 GHz 800-950 GHz 300-1000 GHz 5mm D SiN membrane 4mm Leaky wave slot KID resonator Capacitive compling CPW through line 0.9 Data 1 Calculation 6.0 Response (a.u.) Response (a.u.)

0.1

0.5

0.6

400

500

600

300 40 f (GHz)

0,2

0.1

0

100

200

Detector phase response (a.u.) Measured Absorbed power (lab) - Absorption* n_{ac} 400 800 1000 200600 0.8 0.9 1.0 0.7 Frequency (GHz) Frequency (THz)

Frequency Domain Multiplexing

KID imaging Array

+ Directive beam allows for 4K Lyot stop - extra complexity (assembly) and cost

SpaceKIDs

EU FP7 framework project 2012-2015

Develop MKID technology towards Space applications

- Build 2 large scale demonstrators (TRL 4-5)
 - -> low background demonstrator

The SpaceKIDs low background demonstrator

961 pixels

- I readout chain, 2 coax cables
- I LNA @ 4K (5 mW power)
- I readout system @ 300K
 - 20 mW/pixel for space version

Table 2. Key requirements for the demonstrator system.

	MUX (factor)	٨	1/11	NEPdet	Absorption efficiency	dynamic range	Cosmic Ray dead time	Crosstalk	1/f knee	Yield
Baseline	500	350 µm	5	5×10-19 W/ VHz	>0.5	> 1000	<30%	<-20 dB	<0.5Hz	>60%
Goal	1000	200 µm	1.5	1×10 ⁻¹⁹ W/ √Hz	>0.7	> 10 ⁴	<10%	<-30 dB	<0.1Hz	>70%

916 pixel, 850 GHz demonstrator

Lens - antenna coupling

Twin slot antenna + Si lens (850 GHz)

- Sapphire C plane substrate (birefringent)
- Si lens
- Superconducting materials with significant thickness

Very good match simulations - experiment

• Taper efficiency = 0.8

Array Analysis

- Frequency range 3.67 5.3 GHz
- Resonances

<Q>

• used:

sensitivity measurements

Array in cold box (100 mK)

aperture in BB radiator assembly to illuminate part of the array

KID vs FIR illumination

Sensitivity vs. FIR illumination

Background limited performance @ relevant sky load

P. J. de Visser et al., *Nature Communications*, vol. 5, pp. 1–8, Feb. 2014.

Optical efficiency - central pixels

@ 50 fW we evaluate the optical efficiency 0.9 ± 0.1 compared to the calculated value

- Due to assembly method (solved)
- 68% of theoretical limit
 - Sapphire substrate

Cosmic Rays (K. Karatsu)

55x55x0.35 mm chip of Si

Ground: CRY (http://nuclear.llnl.gov/simulation/)

http://www.sciencedirect.com/science/article/pii/S0168900212005554 L2:

Energy deposition simulation (incl. cryostats/shields etc): GEANT4

https://geant4.web.cern.ch/geant4/

Ground $247 \text{ counts/m}^2/\text{sec}$

10³

10²

Energy deposit in substrate (22265.93 s)

12 $3.8 \cdot 10^4$ counts/m²/sec

Cosmic Rays - lab tests

At negligible absorbed power

- Single glitches with time constant $\sim 1 \text{ msec}$
- fractional dead time (>5 σ): 3.2 10⁻⁴
 - negligible effects on integration: Catalano, A.,et al. 2016b, A&A, 592, A26
- L2 estimation (ignoring energy effects): 4%

At 100 fW loading

- fractional dead time (>5 σ): 9 10⁻⁵
- L2 estimation (ignoring energy effects): 1%

System yield

NEP < 5 \cdot 10⁻¹⁹ W/ \sqrt{Hz} cross talk < -30 dB Cosmic ray dataloss <10%

für Radioastronomie

A-MKID arrays

World's largest submm camera, with ultimate sensitivity from ground

transmission 6

2 FPA's 25120 MKIDs 15 arcmin x 15 arcmin field-of-view

350 GHz 4 x 880 pixels 3520 pixels 850 GHz 4 x 5x 1080 pixels 21600 pixels

How it looks during assembly (April – May 2016)

Gluing of lens array (left), cleaning protective backside layer (middle) and wire bonding (right)

A-MKID arrays large area reliability All Si system 350 GHz band arrays delivered ~85% yield Background limited sensitivity 95% of theoretical efficiency 3520 pixels + A880T

SRON - TU Delft THz sensing

Large, ultra sensitive imaging arrays

http://arxiv.org/abs/1609.01952

High Q superconducting striplings

SRON - TU Delft THz sensing

Measurement of amplitude and phase of direct detector beams

K. Davis et al., accepted for IEEE trans of THz theory and Techn.

Concluding Remarks

We have demonstrated

- kpixel arrays of MKIDs + readout system
- background limited performance + high efficiency
- the antenna design determines the radiation coupling
 - very well under control
 - flexible system in terms of radiation coupling and bandwidth
- antenna coupling + (existing) stripline technology allows for multi colour/dual polarisation pixels using planar OMT

http://arxiv.org/abs/1609.01952

Thank you

