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● A yet to be proven theoretical paradigm describing the early Universe:

✦ Our Universe should have undergone a
phase a exponentially fast accelerated
expansion

✦ Length scales ×eN with N > 60
(e-folds)

✦ Occured at a redshift: zinf > 1010

✦ Could have lasted from 10−32 s to an
infinite amount of time

● Energy involved: 10MeV≪ Einf < 1016 GeV

✦ 1016 GeV = 1000 billion times the energy of the LHC (7.5 billion e)
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● Originally proposed to solve the “monopole” problem [Guth:1981], inflation
ends up adressing various issues of the Friedmann-Lemâıtre
cosmology [Linde:1982].

● Unexplanable or inconsistent with the standard Big-Bang model:

✦ Flatness of the spatial sections: Ω
K
= 0.0008± 0.004

✦ Statistical isotropy of the observable Universe (horizon problem)

✦ Origin of the CMB anisotropies and large scale structures

✦ Gaussianity of the CMB fluctuations: fNL = 0.8± 5.0

✦ Adiabaticity of the cosmological perturbations: isocurv. < 4%

✦ Almost scale invariance of the primordial perturbations:
nS = 0.9667± 0.004

● Within General Relativity (GR) inflation requires “repulsive gravity”
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✦ Negative energy
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cosmology [Linde:1982].

● Unexplanable or inconsistent with the standard Big-Bang model:

✦ Flatness of the spatial sections: Ω
K
= 0.0008± 0.004

✦ Statistical isotropy of the observable Universe (horizon problem)

✦ Origin of the CMB anisotropies and large scale structures

✦ Gaussianity of the CMB fluctuations: fNL = 0.8± 5.0

✦ Adiabaticity of the cosmological perturbations: isocurv. < 4%

✦ Almost scale invariance of the primordial perturbations:
nS = 0.9667± 0.004

● Within General Relativity (GR) inflation requires “repulsive gravity”

✦ //////////Negative/////////energy

✦ Negative pressure
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✦ //////////Negative/////////energy

✦ Negative pressure

✦ Or deviations from GR?
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● The only known “type of matter” generating a negative pressure

S =

∫

dx4
√−g

[

M2
P

2
R+ L(φ)

]

with L(φ) = −1

2
gµν∂µφ∂νφ−V (φ)

✦ Proven to exist since 2012: the Higgs field is a scalar

✦ In slow-roll: φ̇2 ≪ V

ρ =
1

2
H2

(

dφ

dN

)2

+V (φ) ≃ V (φ), P =
1

2
H2

(

dφ

dN

)2

−V (φ) ≃ −V (φ)

● Can the Higgs field h be responsible of inflation?

✦ Yes, provided R→
(

1 + ξh2
)

R [Bezrukov:2008]

✦ Almost equivalent to modify gravity R→ R+
R2

µ2
[Starobinsky:1979]

✦ In the Einstein frame

V (φ) =
0.7M4

P

4ξ2

(

1− e−
√

2/3φ/M
P

)
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● Inflation is quasi de-Sitter spacetime due to φ

✦ Scalar metric-field quantum fluctuations are
amplified [Mukhanov:1981,Starobinky:1982]

✦ Quantum origin ⇒ Gaussianity

✦ Power spectrum of the curvature perturbations at leading order

Pζ =
H2

∗

8π2M2
P
ǫ1∗

, where



















H2
∗
≃ V (φ∗)

3M2
P

ǫ1∗ =
1

2M2
P

dφ

dN

∣

∣

∣

∣

2

∗

≃ M2
P

2

(

V ′

V

)2

⇒ origin of the CMB and of all structures in the Universe

● Quantum fluctuations in de-Sitter ⇒ gravitational waves [Starobinsky:1979]

Ph =
2H2

∗

π2M2
P

≪ Pζ r ≡ Ph

Pζ
= 16ǫ1∗ ≪ 1

⇒ unavoidable consequence of field inflation
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● Amplitude of the CMB temperature anisotropies (Planck 2015)

Pζ ≃ (2.2± 0.1)× 10−9 =
V (φ∗)

24π2M4
P
ǫ1(φ∗)

⇒ ξ ≃ 40000

● Amplitude of the primordial gravitational waves

✦ No free parameter!

ξ = 40000 ⇒ Ph ≃ 8.8× 10−12 ⇒ r = 0.004

✦ Higgs inflation energy scale: Einf ≃ 8× 1015 GeV

● These are gravitational waves produced at a redhift zinf = 1027

✦ Current Planck 2015 constraints: r < 0.12

✦ Out of sensitivity for interferometers such as LIGO/VIRGO

✦ Only one way to go: using the Universe at z = 1100 as a detector:

B-Polarization of the Cosmic Microwave Background
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● Because only gravitational waves and vector perturbations can make
ionized matter in the cosmic plasma moving such as it generates a curly
polarization

● Gravitational waves at z = 1100 can only come from inflation

● Vector perturbations at that time can only come active sources such as
Cosmic Strings, primordial magnetic fields and/or modified gravity

primordial B-modes = inflation or new physics
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● Does Higgs/Starobinsky inflation and r = 0.004 universal predictions?

✦ No, they are currently the simplest and most favoured models

● May Higgs and Starobinsky (and α-attractor) inflation being
disambiguated?

✦ Yes, owing to the reheating, but requires high precision in all
channels T , E, B (see next slides)

● How many models of inflation there are? Can we find the “correct”
one?

✦ Hundreds of slow-roll single field models have been proposed since
the 80s

✦ Planck 2015 + BICEP2/KECK have ruled out almost 40% of them

✦ CMB stage 4 in the worst case scenario: inflation is slow-roll single
field, no feature, no non-Gaussianities, no measureable isocurvature
modes, no topological defects, no understanding of reheating
microphysics

⇒ 80% of existing models would be ruled-out



bC

bC

bC

bC

bC

bCbC

bC

bC

bC

bC

bC
bC

bC

bC

bC

bC

Inflationary predictions matching CMB S4

precision

Motivations

Inflationary predictions
matching CMB S4
precision

❖Slow-roll at next-to-next
to leading order

❖Slow-roll power spectra

❖Model-independent
constraints

❖The reheating era

❖Reheating effects on
inflationary observables

❖Time of pivot crossing

❖Disambiguating Higgs
and Starobinksy inflation

❖Data analysis in model
space

❖Bayesian model
comparison with CMB S4

❖ Information gain on
reheating

Conclusion

11 / 22



bC

bC bC

bC

bC

bC

bC bCbC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

bC

Slow-roll at next-to-next to leading order

Motivations

Inflationary predictions
matching CMB S4
precision

❖Slow-roll at next-to-next
to leading order

❖Slow-roll power spectra

❖Model-independent
constraints

❖The reheating era

❖Reheating effects on
inflationary observables

❖Time of pivot crossing

❖Disambiguating Higgs
and Starobinksy inflation

❖Data analysis in model
space

❖Bayesian model
comparison with CMB S4

❖ Information gain on
reheating

Conclusion

12 / 22

● Perturbative solutions for the background and field-metric perturbations

ǫ0 =
Hini

H
, ǫi+1 =

d ln |ǫi|
dN

measure deviations from de-Sitter

● Background trajectory: N −Nend ≃
∫ φend

φ

V (ψ)

V ′(ψ)
dψ

● Accelerated expansion (ä > 0) stops for ǫ1(φend) = 1

✦ Or, there is another mechanism ending inflation (tachyonic
instability) and φend is a model parameter

● Equations of motion for the linear perturbations

µT ≡ ah
µS ≡ a

√
2φ,Nζ

}

⇒ µ′′

TS +

[

k2 − (a
√
ǫ1)

′′

a
√
ǫ1

]

µTS = 0

✦ Are solved order by order in ǫi around a particular time η∗ = η(N∗)
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● Can be consistently solved using slow-roll and pivot expansion [Stewart:1993,

Gong:2001, Schwarz:2001, Leach:2002, Martin:2002, Habib:2002, Casadio:2005, Lorenz:2008, Martin:2013, Beltran:2013]

✦ Scalar modes

Pζ =
H2

∗

8π2M2
P

ǫ1∗







1 − 2(1 + C)ǫ1∗ − Cǫ2∗ +





π2

2
− 3 + 2C + 2C

2



 ǫ
2
1∗ +





7π2

12
− 6 − C + C

2



 ǫ1∗ǫ2∗

+





π2

8
− 1 +

C2

2



 ǫ
2
2∗ +





π2

24
−

C2

2



 ǫ2∗ǫ3∗

+

[

− 2ǫ1∗ − ǫ2∗ + (2 + 4C)ǫ
2
1∗ + (−1 + 2C)ǫ1∗ǫ2∗ + Cǫ

2
2∗ − Cǫ2∗ǫ3∗

]

ln

(

k

k∗

)

+

[

2ǫ
2
1∗ + ǫ1∗ǫ2∗ +

1

2
ǫ
2
2∗ −

1

2
ǫ2∗ǫ3∗

]

ln
2
(

k

k∗

)}

,

✦ Tensor modes

Ph =
2H2

∗

π2M2
P

{

1 − 2(1 + C)ǫ1∗ +

[

−3 +
π2

2
+ 2C + 2C

2
]

ǫ
2
1∗ +



−2 +
π2

12
− 2C − C

2



 ǫ1∗ǫ2∗

+

[

−2ǫ1∗ + (2 + 4C)ǫ
2
1∗ + (−2 − 2C)ǫ1∗ǫ2∗

]

ln

(

k

k∗

)

+
(

2ǫ
2
1∗ − ǫ1∗ǫ1∗

)

ln
2
(

k

k∗

)

}

● Notice that: H∗ ≡ H(N∗) and ǫi∗ ≡ ǫi(N∗) in which

k∗η(N∗) = −1, Hubble exit of an observable scale k∗
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[Clesse, Ringeval, Vennin:2016]
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● Must exist within inflationary cosmology

✦ Decelerating expansion era immediately following inflation

✦ Transition from field vacuum domination to radiation domination

● Basic picture

✦ In details, a very complicated
process, microphysics dependent

✦ Theoretically, reheating is
completely specified by the
couplings between the inflaton
and Standard Model particles

V (φ) Inflationary part

φφend

Reheating stage

● Two inflationary models may share the same potential while having a
completely different reheating era!

✦ Starobinski Inflation: ρ
1/4
reh
≃ 109 GeV [Terada et al., arXiv:1411.6746]

✦ Higgs Inflation: ρ
1/4
reh

. 1013 GeV?? [Garcia-Bellido et al., arXiv:0812.4624]
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λ aα

areha*
aeqaend

1/ H

Radiation MatterReheating

P(k)Nreh ?

Inflation

N=ln(a)

N* ~ 50−70 efolds

Nobs ~ 10 efolds

● Cosmological observations “measure” Pζ,h(k) from the radiation era;
inflationary models predict Pζ,h(k) at Hubble exit

● Reheating unavoidably affects the observable length scales
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● To make inflationary predictions, one has to solve k∗η∗ = −1

k∗
a

0

=
a(N∗)

a
0

H∗ =
e∆N∗H∗

1 + zend
= e∆N∗Rrad

(

ρend
ρ̃γ

)

−
1
4

H∗

● Rrad can be expressed in terms of (ρreh, wreh) or (∆Nreh, wreh)

lnRrad =
∆Nreh

4
(3wreh − 1) =

1− 3wreh

12(1 + wreh)
ln

(

ρreh
ρend

)

● Defining N
0
≡ ln

[

k∗/(a0
ρ̃
1/4
γ )

]

(number of e-folds of deceleration),

this is a non-trivial integral equation that depends on: model + how
inflation ends + reheating + data [Martin,Ringeval:2006]

−
[

∫ φ∗

φend

V (ψ)

V ′(ψ)
dψ

]

= lnRrad −N0
+

1

4
ln(8π2P∗)

− 1

4
ln

{

9

ǫ1(φ∗)[3− ǫ1(φend)]
V (φend)

V (φ∗)

}
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● Fiducial model has Treh = 108 GeV and wreh = 0
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● Data should be analyzed within the parameter space of each model,
including the reheating parameter: (θinf , Rrad)

● Using the public code ASPIC of Encyclopaedia Inflationaris [arxiv:1303.3787]

(θinf , Rrad) −→ ASPIC −→ ǫi∗ −→
{

Pζ(k)

Ph(k)
−→ CAMB←→ CMB data

Name Parameters Sub-models V (φ)

HI 0 1 M4
(

1− e−
√

2/3φ/MPl

)

RCHI 1 1 M4
(

1− 2e−
√

2/3φ/MPl +
A

I

16π2

φ
√

6MPl

)

LFI 1 1 M4
(

φ
MPl

)p

MLFI 1 1 M4 φ2

M2

Pl

[

1 + α φ2

M2

Pl

]

RCMI 1 1 M4
(

φ
MPl

)2 [

1− 2α φ2

M2

Pl

ln
(

φ
MPl

)]

RCQI 1 1 M4
(

φ
MPl

)4 [

1− α ln
(

φ
MPl

)]

NI 1 1 M4
[

1 + cos
(

φ
f

)]

ESI 1 1 M4
(

1− e−qφ/MPl

)

PLI 1 1 M4e−αφ/MPl

KMII 1 2 M4
(

1− α φ
MPl

e−φ/MPl

)

HF1I 1 1 M4

(

1 +A1
φ

MPl

)2 [

1− 2
3

(

A1

1+A1φ/MPl

)2
]

CWI 1 1 M4

[

1 + α
(

φ
Q

)4
ln

(

φ
Q

)

]

LI 1 2 M4
[

1 + α ln
(

φ
MPl

)]

RpI 1 3 M4e−2
√

2/3φ/MPl

∣

∣

∣
e
√

2/3φ/MPl − 1
∣

∣

∣

2p/(2p−1)

DWI 1 1 M4

[

(

φ
φ
0

)2
− 1

]2

MHI 1 1 M4
[

1− sech
(

φ
µ

)]

RGI 1 1 M4 (φ/MPl)
2

α+(φ/MPl)
2

MSSMI 1 1 M4

[

(

φ
φ
0

)2
− 2

3

(

φ
φ
0

)6
+ 1

5

(

φ
φ
0

)10
]

RIPI 1 1 M4

[

(

φ
φ
0

)2
− 4

3

(

φ
φ
0

)3
+ 1

2

(

φ
φ
0

)4
]

AI 1 1 M4
[

1− 2
π arctan

(

φ
µ

)]

CNAI 1 1 M4
[

3−
(

3 + α2
)

tanh2
(

α
√

2

φ
MPl

)]

CNBI 1 1 M4
[

(

3− α2
)

tan2
(

α
√

2

φ
MPl

)

− 3
]

OSTI 1 1 −M4
(

φ
φ
0

)2
ln

[

(

φ
φ
0

)2
]

WRI 1 1 M4 ln
(

φ
φ
0

)2

SFI 2 1 M4
[

1−
(

φ
µ

)p]

– 15 –

II 2 1 M4
(

φ−φ
0

MPl

)

−β
−M4 β2

6

(

φ−φ
0

MPl

)

−β−2

KMIII 2 1 M4
[

1− α φ
MPl

exp
(

−β φ
MPl

)]

LMI 2 2 M4
(

φ
MPl

)α
exp [−β(φ/MPl)

γ ]

TWI 2 1 M4

[

1−A
(

φ
φ
0

)2
e−φ/φ

0

]

GMSSMI 2 2 M4

[

(

φ
φ
0

)2
− 2

3α
(

φ
φ
0

)6
+ α

5

(

φ
φ
0

)10
]

GRIPI 2 2 M4

[

(

φ
φ
0

)2
− 4

3α
(

φ
φ
0

)3
+ α

2

(

φ
φ
0

)4
]

BSUSYBI 2 1 M4

(

e
√

6 φ

MPl + e
√

6γ φ

MPl

)

TI 2 3 M4
(

1 + cos φ
µ + α sin2 φ

µ

)

BEI 2 1 M4 exp1−β

(

−λ φ
MPl

)

PSNI 2 1 M4
[

1 + α ln
(

cos φ
f

)]

NCKI 2 2 M4

[

1 + α ln
(

φ
MPl

)

+ β
(

φ
MPl

)2
]

CSI 2 1 M4

(

1−α φ

MPl

)

2

OI 2 1 M4
(

φ
φ
0

)4
[

(

ln φ
φ
0

)2
− α

]

CNCI 2 1 M4
[

(

3 + α2
)

coth2
(

α
√

2

φ
MPl

)

− 3
]

SBI 2 2 M4

{

1 +
[

−α+ β ln
(

φ
MPl

)](

φ
MPl

)4
}

SSBI 2 6 M4

[

1 + α
(

φ
MPl

)2
+ β

(

φ
MPl

)4
]

IMI 2 1 M4
(

φ
MPl

)

−p

BI 2 2 M4

[

1−
(

φ
µ

)

−p
]

RMI 3 4 M4
[

1− c
2

(

−1
2 + ln φ

φ
0

)

φ2

M2

Pl

]

VHI 3 1 M4
[

1 +
(

φ
µ

)p]

DSI 3 1 M4

[

1 +
(

φ
µ

)

−p
]

GMLFI 3 1 M4
(

φ
MPl

)p [

1 + α
(

φ
MPl

)q]

LPI 3 3 M4
(

φ
φ
0

)p (

ln φ
φ
0

)q

CNDI 3 3 M4

{

1+β cos

[

α

(

φ− φ
0

MPl

)]}2

– 16 –

http://arxiv.org/abs/1303.3787
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● If reheating microphysics is unknown [Clesse, Martin, Ringeval, Vennin:2016]
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● If reheating microphysics is unknown [Clesse, Martin, Ringeval, Vennin:2016]
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● Slow-roll single field inflation without feature is a worst case scenario on
the route to r = 10−3

✦ Any measurement of non-Gaussianities, features, trans-Planckian
effects, isocurvature would provide unvaluable information on
inflationary microphysics

● Cosmic strings could also be discovered through primordial B-modes, T
at large multipoles, or even with GW direct detection

⇒ lower bound on Einf ⇒ lower bound on r

● CMB S4 should not only target low values of r = 16ǫ1∗ but also
improves accuracy on ǫ2∗ and the running of Pζ ⇒ ǫ3∗

✦ Disambiguating models with reheating

✦ Could potentially kill slow-roll!

● Inflation being proven true would dramatically expand what we call
“The Universe”: a huge impact for Physics
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