

Stan Whitcomb

For the LIGO Scientific Collaboration and the Virgo Collaboration

LAPP Anniversary Celebration, Annecy

14 October 2016

1.3 Billion years ago, in a distant galaxy...

Then on 14 September 2015, at the LIGO sites...

B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), *Observation of Gravitational Waves from a Binary Black Hole Merger*, Phys. Rev. Lett. 116, 061102 (2016)

Outline/Points of Emphasis

History

- » What are the physical effects of a gravitational wave?
- » Why is this appropriate for a particle physics lab?

Detectors

- » How do they work?
- » Challenges

The Future

- » Detector and Network Development
- » Future Physics and Astronomy

Gravitational Wave Basics

 $^{\lambda}$ GW

- Einstein (in 1916) first derived gravitational waves in his General Theory of Relativity
 - » Necessary consequence of Special Relativity with its finite speed for information transfer
 - » Most distinctive departure from Newtonian theory
- Time-dependent distortions of space-time created by the
 - acceleration of masses
 - » Propagate away from the sources at the speed of light
 - » Pure transverse waves
 - » Two orthogonal polarizations

$$h = 2\Delta L/L$$

 Weakness of gravity means there is no feasible way to generate detectable gravitational waves, must rely on astrophysical sources

The First Detectors

- Einstein's view that the waves would never have any practical role in physics prevailed until the early 1960's
- Joseph Weber conceived and built his first bar detectors
 - » Announced in 1969 that he had seen evidence for gravitational waves
- At least 19 different bar detectors (in 8 countries) were built and used in searches
 - » None were able to confirm Weber's claim
- Weber's work triggered wide interest
 - » Theoretical studies of sources
 - » Alternate methods of detection

In the mid-1970s, a New Method of Detecting GWs with Interferometry

Suspended mirrors act as "freely-falling" test masses in horizontal plane for frequencies f >> f_{pend}

For a 3-4 km long detector, $h \sim 10^{-22} - 40^{-21}$ $\Rightarrow \Delta L \sim 10^{-18}$ m (~1/4000 diameter of proton)

$$\Delta L = hL/2$$

Inherently broadband (unlike bars),
Terrestrial bandwidth 10 Hz - 10 kHz,
determined by "unavoidable" noise
(at low frequencies) and expected maximum
source frequencies (high frequencies)

How Small is 10⁻¹⁸ Meter?

One meter

Human hair $\sim 10^{-4}$ m (0.1 mm)

Wavelength of light ~ 10⁻⁶ m

Atomic diameter 10⁻¹⁰ m

Nuclear diameter 10⁻¹⁵ m

GW detector 10⁻¹⁸ m

10-12

1980's: Developed Understanding of Noise Sources and Designed Large Facilities

- Strain sensitivity
 <3x10⁻²³ 1/Hz^{1/2}
 at 200 Hz
- Sensing Noise
 - » Photon Shot Noise
 - » Residual Gas
- Displacement Noise
 - » Seismic motion
 - » Thermal Noise
 - » Radiation Pressure

~1990: Full-Scale Construction Proposals in US, UK, Germany, Italy, France

- Bold proposals, considering the cost and timescale for success
- Recognized that detectors would evolve and improve
- Remarkable vision and braveness of laboratory directors, university leaders, and government funding agencies

The Detectors

Basic (LIGO/Virgo) Interferometer Configuration

Mirror Suspension

 Multi-stage isolation system for attenuating ground noise

- Completely eliminates all ground motion
- Low thermal noise final suspension stage

Vacuum Chambers

Provided to Virgo by LAPP

» Along with mirror installation procedures and fixtures

Schematic Interferometer vs. Real Interferometer

Detection Bench

- Filters and conditions light to eliminate contaminating noise
- Ultra-low scatter, high efficiency
- Supplied by LAPP

Initial LIGO Sensitivity Closely Matches Prediction

Strain Sensitivity for the LIGO Hanford 4km Interferometer

What Can We Expect from the Next Forty Years?

Soon! The Next Observing Run

Living Rev. Relativity 19 (2016), 1

Source Localization Requires a Global Array of GW Detectors

- Detectors are nearly omni-directional
 - » Individually they provide almost no directional information
- Array working together can determine source location
 - » Analogous to "aperture synthesis" in radio astronomy
 - Accuracy tied to diffraction limit

$$\Delta t = (D \cos \theta)/c$$

LIGO-G1602021-v2

LIGO-Virgo Network

Localization Capability: LIGO-Virgo Working Together

LIGO-G1602021-v2

HLV

- LIGO, Virgo began as independent, competing Projects
- International collaboration was anticipated, but clearly put off to the future
- In 2005, Virgo and LIGO negotiated ground-breaking data-sharing agreement
 - » Complete merger of Data Analysis efforts

S. Fairhurst, "Improved source localization with LIGO India", J. Phys.: Conf. Ser. 484 012007

Localization Capability: LIGO-Virgo Working Together

S. Fairhurst, "Improved source localization with LIGO India", J. Phys.: Conf. Ser. 484 012007

The Global Network

Localization Capability: LIGO-Virgo plus LIGO-India

S. Fairhurst, "Improved source localization with LIGO India", J. Phys.: Conf. Ser. 484 012007

Future Observing Runs

Living Rev. Relativity 19 (2016), 1

Scientific Prospects for Advanced LIGO

Source Parameters determined from Waveform

Parameter	Value	90% Error	Unit
Primary black hole mass	36	+5 -4	M _⊙
Secondary black hole mass	29	+4 -5	M _⊙
Final black hole mass	62	+4 -4	M _⊙
Total radiated energy	3.0	+0.5 -0.5	M _⊙
Final black hole spin	0.67	+0.05 -0.07	
Luminosity distance	410	+160 -190	Mpc
Source redshift z	0.09	+0.03 -0.04	

Scientific Prospects for Advanced LIGO

Census of Black Holes in the Universe

Previously known black holes (X-ray binary systems)

Further Questions in Physics and Astronomy

- Is General Relativity the correct theory of gravity?
 - » Wave propagation speed (delays in arrival time of bursts)
 - » Spin of the graviton (polarization of radiation)
 - » Are black holes really characterized by only mass and spin?
- Nuclear physics—neutron stars
 - » How does matter behave under extreme conditions?
 - » Determine the matter equation of state at nuclear densities
- Astrophysics, Astronomy, Cosmology
 - » What is the supernova mechanism in core-collapse of massive stars?
 - » How bumpy are neutron stars?
 - » Do compact binary mergers cause GRBs?
 - » Are there unexpected gravitational wave sources?
 - » Can we observe a stochastical background of GWs?
 - » Can binary inspirals be used as "standard sirens" to measure the local Hubble parameter?

GW Upper limit map

Right ascension [hours]

Future Detectors

- Advanced LIGO/Virgo are not the end!
- Another factor of 10 in sensitivity is technologically possible

Gravitational Wave Spectrum

Minutes to Hours Years to Decades Billions of Years

Anniversary Celebration, Annecy